Open Access
Issue |
BIO Web Conf.
Volume 177, 2025
14th International Symposium of Indonesian Society for Microbiology (ISISM 2024)
|
|
---|---|---|
Article Number | 07004 | |
Number of page(s) | 17 | |
Section | Microbial Metabolites and Bioactivity | |
DOI | https://doi.org/10.1051/bioconf/202517707004 | |
Published online | 22 May 2025 |
- H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B.B. Duncan, C. Stein, A. Basit, J.C.N. Chan, J.C. Mbanya, M.E. Pavkov, A. Ramachandaran, S.H. Wild, S. James, W.H. Herman, P. Zhang, C. Bommer, S. Kuo, E.J. Boyko, D.J. Magliano, IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022). https://doi.org/10.1016/j.diabres.2021.109119 [Google Scholar]
- Kemenkes, Laporan Nasional Riskesdas 2018, available at: https://layanandata.kemkes.go.id/katalog-data/riskesdas/ketersediaan-data/riskesdas-2018(2018) [Google Scholar]
- Kemenkes, Survei Kesehatan Indonesia tahun 2023: Dalam angka, available at: https://layanandata.kemkes.go.id/katalog-data/ski/ketersediaan-data/ski-2023(2023) [Google Scholar]
- M.J. Meneses, B.M. Silva, M. Sousa, R. Sa, P.F. Oliveira, M.G. Alves, Antidiabetic drugs: mechanisms of action and potential outcomes on cellular metabolism. Curr. Pharm. Des. 21, 3606 (2015) [Google Scholar]
- Z. Yin, W. Zhang, F. Feng, Y. Zhang, W. Kang, a-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness. 3, 136 (2014). https://doi.org/10.1016/j.fshw.2014.11.003 [Google Scholar]
- M.A. Ibrahim, M.J. Bester, A.W.H. Neitz, A.R.M. Gaspar, Structural properties of bioactive peptides with a-glucosidase inhibitory activity. Chem. Biol. Drug Des. 91, 370 (2018). https://doi.org/10.1111/cbdd.13105 [Google Scholar]
- Y. Ren, K. Liang, Y. Jin, M. Zhang, Y. Chen, H. Wu, F. Lai, Identification and characterization of two novel a-glucosidase inhibitory oligopeptides from hemp Cannabis sativa L.) seed protein. J. Funct. Foods. 26, 439 (2016). https://doi.org/10.1016/j.jff.2016.07.024 [Google Scholar]
- S. Payne-Botha, E.J. Bigwood, Amino-acid content of raw and heat-sterilized cow's milk. Br. J. Nutr. 13, 385 (1959). https://doi.org/10.1079/BJN19590052 [Google Scholar]
- B. Konrad, D. Anna, S. Marek, P. Marta, Z. Aleksandra, C. Jözefa, The evaluation of dipeptidyl peptidase (DPP)-IV, a-glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian pumpkin (Cucurbita ficifolia). Int. J. Pept. Res. Ther. 20, 483 (2014). https://doi.org/10.1007/s10989-014-9413-0 [Google Scholar]
- A. Vander, J. Sherman, D. Luciano, Human physiology: The mechanism of body (The McGraw-Hill Companies, Boston, 2001) [PubMed] [Google Scholar]
- S. Chiba, Molecular mechanism in a-glucosidase and glucoamylase. Biosci. Biotechnol. Biochem. 61, 1233 (1997). https://doi.org/10.1271/bbb.61.1233 [Google Scholar]
- P. Chen, Q. Zhang, H. Dang, X. Liu, F. Tian, J. Zhao, Y. Chen, H. Zhang, W. Chen, Screening for potential new probiotic based on probiotic properties and a-glucosidase inhibitory activity. Food Control. 35, 65 (2014). https://doi.org/10.1016/j.foodcont.2013.06.027 [Google Scholar]
- L. Muganga, X. Liu, F. Tian, J. Zhao, H. Zhang, W. Chen, Screening for lactic acid bacteria based on antihyperglycaemic and probiotic potential and application in synbiotic set yoghurt. J. Funct. Foods. 16, 125 (2015). https://doi.org/10.1016/i.iff.2015.04.030 [Google Scholar]
- L. Ramchandran, N.P. Shah, Proteolytic profiles and angiotensin-I converting enzyme and a-glucosidase inhibitory activities of selected lactic acid bacteria. J. Food Sci. 73, M75 (2008). https://doi.org/10.1111/i.1750-3841.2007.00643.x [Google Scholar]
- L.F. Paludetti, K. Jordan, A.L. Kelly, D. Gleeson, Evaluating the effect of storage conditions on milk microbiological quality and composition. Ir. J. Agric. Food Res. 57, 52 (2018). [Google Scholar]
- E. Puspitojati, M.N. Cahyanto, Y. Marsono, R. Indrati, Changes in amino acid composition during fermentation and its effects on the inhibitory activity of angiotensin-I-converting enzyme of iack bean tempe following in vitro gastrointestinal digestion. J. Food Nutr. Res. 58, 319 (2019). [Google Scholar]
- M.N. Hamidah, L. Rianingsih, R. Romadhon, Aktivitas antibakteri isolat bakteri asam laktat dari peda dengan jenis ikan berbeda terhadap E. coli dan S. aureus. J. Ilmu Teknol. Perikan. 1, 11 (2019). https://doi.org/10.14710/iitpi.2019.6742 [Google Scholar]
- S.N. Casarotti, A.L.B. Penna, Acidification profile, probiotic in vitro gastrointestinal tolerance and viability in fermented milk with fruit flours. Int. Dairy J. 41, 1 (2015). https://doi.org/10.1016/i.idairyj.2014.08.021 [Google Scholar]
- P. Leverrier, D. Dimova, V. Pichereau, Y. Auffray, P. Boyaval, G. Jan, Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: Physiological and proteomic analysis. Appl. Environ. Microbiol. 69, 3809 (2003). https://doi.org/10.1128/AEM.69.7.3809-3818.2003 [Google Scholar]
- A. Rault, M. Bouix, C. Béal, Fermentation pH influences the physiological-state dynamics of Lactobacillus bulgaricus CFL1 during pH-controlled culture. Appl. Environ. Microbiol. 75, 4374 (2009). https://doi.org/10.1128/AEM.02725-08 [Google Scholar]
- Z. Yu, Y. Yin, W. Zhao, J. Liu, F. Chen, Anti-diabetic activity peptides from albumin against a-glucosidase and a-amylase. Food Chem. 135, 2078 (2012). https://doi.org/10.1016/i.foodchem.2012.06.088 [Google Scholar]
- Y. Zhang, N. Wang, W. Wang, J. Wang, Z. Zhu, X. Li, Molecular mechanisms of novel peptides from silkworm pupae that inhibit a-glucosidase. Peptides. 76, 45 (2016). https://doi.org/10.1016/i.peptides.2015.12.004 [Google Scholar]
- A.M. Rusydan, N.T. Zulfaidah, Peptida bioaktif: Menielaiahi potensi dan tantangan menuiu pangan masa depan. J. Farm. SYIFA. 2, 56 (2024). https://doi.org/10.63004/ifs.v2i2.461 [Google Scholar]
- H. Lu, T. Xie, Q. Wu, Z. Hu, Y. Luo, F. Luo, Alpha-glucosidase inhibitory peptides: Sources, preparations, identifications, and action mechanisms. Nutrients. 15, 4267 (2023). https://doi.org/10.3390/nu15194267 [Google Scholar]
- Y. Liu, M. Pischetsrieder, Identification and relative quantification of bioactive peptides sequentially released during simulated gastrointestinal digestion of commercial kefir. J. Agric. Food Chem. 65, 1865 (2017). https://doi.org/10.1021/acs.iafc.6b05385 [Google Scholar]
- H. Korhonen, A. Pihlanto, Bioactive peptides: Production and functionality. Int. Dairy J. 16, 945 (2006). https://doi.org/10.1016/Udairyi.2005.10.012 [Google Scholar]
- M. Liu, Y. Wang, Y. Liu, R. Ruan, Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: A review. Food Res. Int. 89, 63 (2016). https://doi.org/10.1016/i.foodres.2016.08.009 [Google Scholar]
- T. Ahmed, X. Sun, C.C. Udenigwe, Role of structural properties of bioactive peptides in their stability during simulated gastrointestinal digestion: A systematic review. Trends Food Sci. Technol. 120, 265 (2022). https://doi.org/10.1016/i.tifs.2022.01.008 [Google Scholar]
- U. Schillinger, W.H. Holzapfel, K.J. Björkroth, Lactic acid bacteria, in Food spoilage microorganisms, edited by C. de W. Blackburn (Woodhead Publishing Ltd, Cambridge, UK, 2006), 541 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.