Open Access
Issue
BIO Web Conf.
Volume 182, 2025
The 3rd International Conference on Food Science and Bio-medicine (ICFSB 2025)
Article Number 01006
Number of page(s) 5
Section Food Science and Nutrition Research
DOI https://doi.org/10.1051/bioconf/202518201006
Published online 02 July 2025
  • Way J C, Collins J J, Keasling J D, et al. Integrating biological redesign:where synthetic biology came from and where it needs to go[J]. Cell, 2014, 157(1):151–161. [CrossRef] [PubMed] [Google Scholar]
  • Konig H, Frank D, Heil R, et al. Synthetic genomics and synthetic biology applications between hopes and concerns[J]. Current Genomics, 2013, 14(1):11–24. [Google Scholar]
  • Wu, Y., & Song, C. (2024). Food synthetic biology technology promotes new industrial development. New Economy Guide, (4). [Google Scholar]
  • Ding, M., Li, B., Wang, Y., et al. (2020). Advances in key research directions of synthetic biology. Synthetic Biology, 1(1), 7–28. [Google Scholar]
  • Cao C Z, Zhang X Y, Xu Y Y, Zhou Z, Wei WS. Genome editing technology and its application in synthetic biology[J]. Synthetic Biology, 2020, 1(4):14. doi:10.12211/2096-8280.2020-047. [Google Scholar]
  • Xiang Peng. Research on artificial gene circuit design and synthetic biology[J]. High-tech and Industrialization, 2022, 28(11):18–21. [Google Scholar]
  • Ruan, Z., Chen, K., Cao, W. et al. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat Commun 15, 4694 (2024). [Google Scholar]
  • Dong Jia-Min, Yang Xin-Yi, MOK Jin-Ling, et al. Effects of human milk oligosaccharides on children’s neurodevelopment[J]. Chinese Journal of Behavioral Medicine and Brain Science, 2024, 33(10):920–925. DOI:10.3760/cma.j.cn371468-20240407-00155. [Google Scholar]
  • Conze DB, Kruger CL, Symonds JM, Lodder R, Schönknecht YB, Ho M, Derya SM, Parkot J, Parschat K. Weighted analysis of 2’-fucosyllactose, 3-fucosyllactose, lacto-N-tetraose, 3’-sialyllactose, and 6’-sialyllactose concentrations in human milk. Food Chem Toxicol. 2022 May;163:112877. doi: 10.1016/j.fct.2022.112877. Epub 2022 Mar 16. PMID: 35304182. [Google Scholar]
  • Li, TR., Huck, F., Piccini, G. et al. Mimicry of the proton wire mechanism of enzymes inside a supramolecular capsule enables β-selective Oglycosylations. Nat. Chem. 14, 985–994 (2022). https://doi.org/10.1038/s41557-022-00981-6 [Google Scholar]
  • McKay, M. J., & Nguyen, H. M. (2012). Recent advances in transition metal-catalyzed glycosylation. ACS Catalysis, 2(8), 1563–1595. [CrossRef] [PubMed] [Google Scholar]
  • Wan, L., Zhu, Y. Y., Li, W., et al. (2020). Combinatorial modular pathway engineering for guanosine 5′-diphosphatel-fucose production in recombinant Escherichia coli. Journal of Agricultural and Food Chemistry, 68(20), 5668–5675. [Google Scholar]
  • Deng, J. Y., Gu, L. Y., Chen, T. C., et al. (2019). Engineering the substrate transport and cofactor regeneration systems for enhancing 2′-fucosyllactose synthesis in Bacillus subtilis. ACS Synthetic Biology, 8(10), 2418–2427. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, Q. W., Liu, Z. M., Xia, H. Z., et al. (2022). Engineered Bacillus subtilis for the de novo production of 2′-fucosyllactose. Microbial Cell Factories, 21(1), 110. [Google Scholar]
  • Qu, L. S., Xiu, X., Sun, G. Y., et al. (2022). Engineered yeast for efficient de novo synthesis of 7dehydrocholesterol. Biotechnology and Bioengineering, 119(5), 1278–1289. [CrossRef] [PubMed] [Google Scholar]
  • Zou Yuan, Sun Chao, Liu Hong, et al. A method for the preparation of 7-dehydrocholesterol intermediates and a method for the preparation of 7dehydrocholesterol: CN202211332514.8[P]. CN115820782A[2025-03-18]. [Google Scholar]
  • Zhang, Y., Zhang, L., Liu, D., et al. (2014). Match of functional module with chassis in 7dehydrocholesterol synthesis. Chinese Journal of Biotechnology, 30(1), 30–42. [Google Scholar]
  • Guo, X. J., Yao, M. D., Xiao, W. H., et al. (2021). Compartmentalized reconstitution of post-squalene pathway for 7-dehydrocholesterol overproduction in Saccharomyces cerevisiae. Frontiers in Microbiology, 12, 663973. [Google Scholar]
  • Qu, L. S., Xiu, X., Sun, G. Y., et al. (2022). Engineered yeast for efficient de novo synthesis of 7dehydrocholesterol. Biotechnology and Bioengineering, 119(5), 1278–1289. [CrossRef] [PubMed] [Google Scholar]
  • Xiu, X., Sun, Y., Wu, Y. K., et al. (2022). Modular modeling of sterol metabolism for overproduction of 7-dehydrocholesterol in engineered yeast. Bioresource Technology, 360, 127572. [CrossRef] [PubMed] [Google Scholar]
  • Liu Jiaxin, Zhao Xiaoying, Weng Yunxuan. Review on the development and application of biodegradable polymer food packaging materials. School of Chemistry and Materials Engineering, Beijing Technology and Business University, 2023. [Google Scholar]
  • Lu Chengrong, Zhang Mengjun, ZHENG Weishuang, et al. Progress of PHA extraction process for biobased degradable materials[J]. Chinese Journal of Bioengineering, 2023, 43(11):105–115. [Google Scholar]
  • Wang Z H, Ma P, Chen J, et al. A transferable heterogeneous two hybrid system in Escherichia coli based on polyhydroxyalkanoates synthesis regulatory protein PhaR[J]. Microbial Cell Factories, 2011, 10(1):21. [Google Scholar]
  • Wang H H, Zhou X R, Liu Q, et al. Biosynthesis of polyhy droxyalkanoate homopolymers by Pseudomonas putida[J]. Applied Microbiology and Biotechnology, 2011, 89(5):1497–1507. [CrossRef] [PubMed] [Google Scholar]
  • Liu Q, Luo G, Zhou X R, et al. Biosynthesis of poly(3-hydrox ydecanoate) and 3-hydroxydodecanoate dominating polyhydroxy alkanoates by beta-oxidation pathway inhibited Pseudomonas putida[J]. Metabolic Engineering, 2011, 13(1):11–17. [Google Scholar]
  • Li T, Ye J, SHEN R, et al. Semirational approach for ultrahigh poly(3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening[J]. ACS Synthetic Biology, 2016, 5(11):1308–1317. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.