Open Access
Issue
BIO Web Conf.
Volume 182, 2025
The 3rd International Conference on Food Science and Bio-medicine (ICFSB 2025)
Article Number 02008
Number of page(s) 9
Section Biomedical Research and Applications
DOI https://doi.org/10.1051/bioconf/202518202008
Published online 02 July 2025
  • C. Kirchhelle, Pharming animals: a global history of antibiotics in food production (1935–2017). Palgrave Commun., 4, 1 (2018) [Google Scholar]
  • M. Bacanlı, N. Başaran, Importance of antibiotic residues in animal food. Food Chem Toxicol., 125 (2019) [Google Scholar]
  • G. Muteeb, M. T. Rehman, M. Shahwan, M. Aatif, Origin of antibiotics and antibiotic resistance, and their impacts on drug development: a narrative review. Pharmaceuticals, 16, 11 (2023) [Google Scholar]
  • J.M. Munita, C.A. Arias, Mechanisms of antibiotic resistance. Microbiol. Spectr., 4 (2016) [Google Scholar]
  • J. Tanwar, S. Das, Z. Fatima, S. Hameed, Multidrug resistance: an emerging crisis. Interdiscip. Perspect. Infect. Dis., 2014 (2014) [Google Scholar]
  • V. Economou, P. Gousia, Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. (2015) [Google Scholar]
  • G. Annunziato, Strategies to overcome antimicrobial resistance (amr) making use of non-essential target inhibitors: a review. Int. J. Mol. Sci., 20, 23 (2019) [Google Scholar]
  • C. González-Bello, Antibiotic adjuvants–a strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett., 27, 18 (2017) [Google Scholar]
  • G. Dhanda, Y. Acharya, J. Haldar, Antibiotic adjuvants: a versatile approach to combat antibiotic resistance. ACS Omega, 8, 12 (2023) [Google Scholar]
  • V. Kumar, N. Yasmeen, A. Pandey, A.A. Chaudhary, A.S. Alawam, H.A. Rudayni, A. Islam, S.S. Lakhawat, P.K. Sharma, M. Shahid, Antibiotic adjuvants: synergistic tool to combat multi-drug resistant pathogens. Front. cell. infect. microbiol., 13 (2023) [Google Scholar]
  • E.E. Gill, O.L. Franco, R.E. Hancock, Antibiotic adjuvants: diverse strategies for controlling drug‐ resistant pathogens. Chem. Biol. Drug Des., 85 (2015) [Google Scholar]
  • G.D. Wright, Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol., 24, 11 (2016) [Google Scholar]
  • R.J. Melander, C. Melander, The challenge of overcoming antibiotic resistance: An adjuvant approach? ACS Infect. Dis., 3, 8 (2017) [Google Scholar]
  • S. Thota, D.A. Rodrigues, P.S.M. Pinheiro, L.M. Lima, C.A.M. Fraga, E.J. Barreiro, N-acylhydrazones as drugs. Bioorg. Med. Chem. Lett., 28, 17 (2018) [Google Scholar]
  • L.I Socea, S.F. Barbuceanu, E.M. Pahontu, A.C. Dumitru, G.M. Nitulescu, R.C. Sfetea, T.V. Apostol, Acylhydrazones and their biological activity: a review. Molecules, 27, 24 (2022) [Google Scholar]
  • J.N. Eloff, A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med., 64, 8 (1998) [Google Scholar]
  • European Committee for Antimicrobial Susceptibility Testing, Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect., 9, 8 (2003) [Google Scholar]
  • B. Kowalska-Krochmal, R. Dudek-Wicher, The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 10, 2 (2021) [Google Scholar]
  • L. Botz, B. Kocsis, S. Nagy, Bioassays | Bioautography. In: P. Worsfold, A. Townshend and C. Poole, eds. 2005. Encyclopedia of Analytical Science (Elsevier, 2005) [Google Scholar]
  • M.E. Levison, J.H. Levison, Pharmacokinetics and pharmacodynamics of antibacterial agents. Clin. Infect. Dis., 23, 4 (2009) [Google Scholar]
  • M.C. Berenbaum, A method for testing for synergy with any number of agents. J. Infect. Dis., 137, 2 (1978) [Google Scholar]
  • W. Gu, R. Wu, S. Qi, C. Gu, F. Si, Z. Chen, Synthesis and antibacterial evaluation of new N-acylhydrazone derivatives from dehydroabietic acid. Molecules, 17, 4 (2012) [Google Scholar]
  • C. Albayrak, G. Kaştaş, M. Odabaşoğlu, R. Frank, The prototropic tautomerism and substituent effect through strong electron-withdrawing group in (E)-5(diethylamino)-2-[(3-nitrophenylimino) methyl] phenol. Spectrochim Acta A Mol Biomol Spectrosc, 114 (2013) [Google Scholar]
  • E.O. Yeye, AkintundeAdeniyi-Akee, M., Ahmed, S.A. and Aboaba, S.A., In silico studies and antimicrobial investigation of synthesised novel Nacylhydrazone derivatives of indole. Sci. Afr., 19 (2023) [Google Scholar]
  • N.A. Mohamed, M.W. Sabaa, A.H. El-Ghandour, M.M. Abdel-Aziz, O.F. Abdel-Gawad, Quaternized N-substituted carboxymethyl chitosan derivatives as antimicrobial agents. Int. J. Biol. Macromol., 60 (2013) [Google Scholar]
  • S. Noriega, J. Cardoso-Ortiz, A. López-Luna, M.D.R. The diverse biological activity of recently synthesized nitro compounds. Pharmaceuticals, 15, 6 (2022) [Google Scholar]
  • J.J.L. Cascales, S. Zenak, J.G. Torre, O.G. Lezama, A. Garro, R.D. Enriz, Small cationic peptides: influence of charge on their antimicrobial activity. ACS Omega, 3, 5 (2018) [Google Scholar]
  • K. Radhakrishnan, P. Mohandass, S. Sankaralingam, S.C. Mohan, Synthesis and antimicrobial activity of 2-benzylidene-1, 3-indandiones: A structure reactivity study. Der Chem. Sinica, 7, 4 (2016) [Google Scholar]
  • M. Singh, S.K. Singh, M. Gangwar, G. Nath, S.K. Singh, Design, synthesis and mode of action of some benzothiazole derivatives bearing an amide moiety as antibacterial agents. RSC Adv., 4, 36 (2014) [Google Scholar]
  • K. Naumann, Influence of chlorine substituents on biological activity of chemicals: a review. Pest Manag. Sci., 56 (2000) [Google Scholar]
  • H. Shirinzadeh, N. Altanlar, N. Yucel, S. Ozden, S. Suzen, Antimicrobial evaluation of indole-containing hydrazone derivatives. Z. Naturforsch. C., 66 (2011) [Google Scholar]
  • K.R. Benson, J. Stash, K.L. Moffa, R.H. Schmehl, T.J. Dudley, J.J. Paul, Ruthenium complexes with asymmetric hydroxy-and methoxy-substituted bipyridine ligands. Polyhedron, 205 (2021) [Google Scholar]
  • T. Bollenbach, Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolution. Curr Opin Microbiol., 27 (2015) [Google Scholar]
  • M. Tyers, G.D. Wright, Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol., 17, 3 (2019) [Google Scholar]
  • S. Ammendola, V. Secli, F. Pacello, M. Bortolami, F. Pandolfi, A. Messore, R. Santo, L. Scipione, A. Battistoni, Salmonella Typhimurium and Pseudomonas aeruginosa respond differently to the Fe chelator deferiprone and to some novel deferiprone derivatives. Int. J. Mol. Sci., 22, 19 (2021) [Google Scholar]
  • N. Singh, P.J. Yeh, Suppressive drug combinations and their potential to combat antibiotic resistance. J. Antibiot., 70, 11 (2017) [Google Scholar]
  • Z. Breijyeh, B. Jubeh, R. Karaman, Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25, 6 (2020) [Google Scholar]
  • G. Kapoor, S. Saigal, A. Elongavan, Action and resistance mechanisms of antibiotics: a guide for clinicians. J. Anaesthesiol. Clin. Pharmacol., 33, 3 (2017) [Google Scholar]
  • T.J. Silhavy, D. Kahne, S. Walker, The bacterial cell envelope. Cold Spring Harb Perspect Biol, 2, 5 (2010) [Google Scholar]
  • N. Sagawa, T. Shikata, Are all polar molecules hydrophilic? Hydration numbers of nitro compounds and nitriles in aqueous solution. Phys. Chem. Chem. Phys., 16, 26 (2014) [Google Scholar]
  • N. Molchanova, J.E. Nielsen, K.B. Sørensen, B.K. Prabhala, P.R. Hansen, R. Lund, A.E. Barron, H. Jenssen, Halogenation as a tool to tune antimicrobial activity of peptoids. Sci. Rep., 10, 1 (2020) [Google Scholar]
  • F. Mallamace, D. Mallamace, S.H. Chen, P. Lanzafame, G. Papanikolaou, Hydrophilic and hydrophobic effects on the structure and themodynamic properties of confined water: water in solutions. Int. J. Mol. Sci., 22, 14 (2021) [Google Scholar]
  • L. Poirel, J.Y. Madec, A. Lupo, A.K. Schink, N. Kieffer, P. Nordmann, S. Schwarz, Antimicrobial resistance in Escherichia coli. Microbiol. Spectr., 6, 4 (2018) [Google Scholar]
  • H. Liu, L. Dong, Y. Zhao, L. Meng, J. Wang, C. Wang, N. Zheng, Antimicrobial susceptibility, and molecular characterization of Staphylococcus aureus isolated from different raw milk samples in China. Front. Microbiol., 13 (2022) [Google Scholar]
  • M. Aarjane, A. Aouidate, S. Slassi, A. Amine, Synthesis, antibacterial evaluation, in silico ADMET and molecular docking studies of new Nacylhydrazone derivatives from acridone. Arab. J. Chem., 13, 7 (2020) [Google Scholar]
  • Q. Hu, Y. Fang, J. Zhu, W. Xu, K. Zhu, Characterization of Bacillus species from market foods in Beijing, China. Processes, 9, 5 (2021) [Google Scholar]
  • M.A. Salam, M.Y. Al-Amin, M.T. Salam, J.S. Pawar, N. Akhter, A.A. Rabaan, M.A. Alqumber, Antimicrobial resistance: a growing serious threat for global public health. J. Healthc., 11, 13 (2023) [Google Scholar]
  • S.J. Peacock, G.K. Paterson, Mechanisms of methicillin resistance in Staphylococcus aureus. Annu. Rev. Biochem., 84 (2015) [Google Scholar]
  • A. Kaushik, H. Kest, M. Sood, B.W. Steussy, C. Thieman, S. Gupta, Biofilm producing methicillinresistant Staphylococcus aureus (MRSA) infections in humans: clinical implications and management. Pathogens, 13, 1 (2024) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.