Open Access
Issue |
BIO Web Conf.
Volume 8, 2017
2016 International Conference on Medicine Sciences and Bioengineering (ICMSB2016)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 10 | |
Section | Session I: Medicine | |
DOI | https://doi.org/10.1051/bioconf/20170801025 | |
Published online | 11 January 2017 |
- Sandhoff K., Harzer K., J. Neurosci. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. 25, 10195–10208 (2013). [Google Scholar]
- Giordano G., Sanchez-Perez A.M., Burgal M., et al. J. Neurochem. Chronic exposure to ammonia induces isoform reselective alterations in the intracellular distribution and NMDA receptor–mediated translocation of protein kinas C in cerebellar neurons in culture. 1, 143–157 (2005). [Google Scholar]
- Lallemend F., Hadjab S., Hans G., et al. J. cell. Sci. Activation of protein kinase CbetaI constitutes a new neurotrophic pathway for deafferented spiral ganglionneurons. 19, 4511–4525 (2005). [Google Scholar]
- Yates A. J., Saqr H.E., Van Brocklyn J. J. Neurooncol. Ganglioside modulation of the PDGF receptor. A model for ganglioside functions. 1, 65–73 (1995). [CrossRef] [Google Scholar]
- Beni S.M., Tsenter J., Alexandrovich A.G., et a1. J. Cereb Blood Flow Metab. CuZn SOD deficiency, rather than overexpression, is associated with enhanced recovery and attenuated activation of NF-kappa B after brain trauma in mice. 4, 478–490 (2006). [Google Scholar]
- Duchemin A. M., Ren Q., Neff N.H., Hadjiconstantinou M. J. Neurosci. GM1-induced activation of phosphatidylinositol 3-kinase: involvement of Trk receptors. 104, 1466–1477 (2008). [Google Scholar]
- Duchemin A. M., Ren Q., Mo L., et al. J. Neurosci. GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain. 81, 696–707 (2002). [Google Scholar]
- Israel A. Trends Cell Biol. The IKK complex: an integrator of all signals that activate NF-κB. 10, 129–133 (2000). [CrossRef] [PubMed] [Google Scholar]
- A. Campos, V. Vasconcelos. Int. J. Mol. Sci. Molecular mechanisms of microcystin toxicity in animal cells. 11, 268–287 (2010). [CrossRef] [PubMed] [Google Scholar]
- Wiemerslage L., Ismael S., Lee D.. Mitochondrion. Early alterations of mitochondrial morphology in dopaminergic neurons from Parkinson’s disease-like pathology and time-dependent neuroprotection with D2 receptor activation. (2016). [Google Scholar]
- Zhen Y., Wang B., Zhou W.Q. Chinese Journal of Clinical Rehabilitation. The apoptosis effect of salicylic acid on P12 cells. 6, 70–72 (2006). [Google Scholar]
- Ayumi T., Katsumi H., et al. J. Neurochem. Lysosomal accumulation of Trk protein in brain of GM1-gangliosidosis mouse and its restoration by chemical chaperone. 3, 399–406 (2011). [Google Scholar]
- Ji H., Zhang X., Du Y., Liu H., Li S., et al. Brain. Res. Bull. Polydatin modulates inflammation by decreasing NF-κB activation and oxidative stress by increasing Gli1, Ptch1, SOD1 expression and ameliorates blood-brain barrier permeability for its neuroprotective effect in pMCAO rat brain. 1, 50–59 (2012). [Google Scholar]
- Mattson M.P. J. Neurochem. NF-kappa B in the survival and plasticity of neurons. 6, 883–893 (2005). [CrossRef] [Google Scholar]
- Dragicevic N., Delic V., Cao C., et al. Neuropharmacology. Caffeine increases mitochondrial function and blocks melatonin signaling to mitochondria in Alzheimer’s mice and cells. 8, 1368–1379 (2012). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.