Open Access
Issue
BIO Web Conf.
Volume 41, 2021
The 4th International Conference on Bioinformatics, Biotechnology, and Biomedical Engineering (BioMIC 2021)
Article Number 07003
Number of page(s) 6
Section Drug Development and Nutraceutical
DOI https://doi.org/10.1051/bioconf/20214107003
Published online 22 December 2021
  • H. Gunardi, F. Zaimi, L, R. Soedjatmiko, A, and H. Muljono, D, “Current prevalence of hepatitis B infection among parturient women in Jakarta, Indonesia, ” Acta Med Indones, vol. 46, pp. 3–9, 2014. [PubMed] [Google Scholar]
  • R. Waty, Z. Mustopa, Apon, Suharsono, A. Ningrum, Ratih, and M. Hidayah, “Soluble expression and purification of hepatitis B core antigen (HBcAg) subgenotype B3 in Escherichia coli using thioredoxin fusion tag, ” Asian Pacific J. Trop. Dis., vol. 7, no. 8, pp. 496–501, 2017. [CrossRef] [Google Scholar]
  • F. Akbar, S, M, M. Al-Mahtab, H. Uddin, M, and I. Khan, S, “HBsAg, HBcAg, and combined HBsAg/HBcAg-based therapeutic vaccines in treating chronic hepatitis B virus infection, ” Hepatobiliary Pancreat Dis Int, vol. 12, no. 4, pp. 363–369, 2013. [CrossRef] [PubMed] [Google Scholar]
  • G. Wang, L. Pan, and Y. Zhang, “Approaches to Improved Targeting of DNA Vaccines, ” Hum Vaccines., vol. 7, pp. 1271–1281, 2011. doi: DOI:10.4161/hv.7.12.17983. [CrossRef] [PubMed] [Google Scholar]
  • L. Unsunnidhal, J. Ishak, and A. Kusumawati, “Expression of gag-CA Gene of Jembrana Disease Virus with Cationic Liposomes and Chitosan Nanoparticle Delivery Systems as DNA Vaccine Candidates, ” Trop. Life Sci. Res., vol. 30, no. 3, pp. 15–36, 2019. doi: https://doi.org/10.21315/tlsr2019.30.3.2. [CrossRef] [Google Scholar]
  • J. Ishak, L. Unsunnidhal, R. Martien, and A. Kusumawati, “In vitro evaluation of chitosanDNA plasmid complex encoding Jembrana disease virus Env-TM protein as a vaccine candidate, ” J. Vet. Res., vol. 63, no. 1, pp. 7–16, 2019. doi: https://doi.org/10.2478/jvetres2019-0018. [CrossRef] [Google Scholar]
  • J. Williams, “Vector Design for Improved DNA Vaccine Efficacy, Safety and Production, ” Vaccines, vol. 1, no. 3, pp. 225–249, 2013. doi: 10.3390/vaccines1030225. [CrossRef] [PubMed] [Google Scholar]
  • D. Luo et al., “Protective Immunity Elicited by A Divalent DNA Vaccine Encoding Both The L7/L12 and Omp16 Genes of Brucella abortus in BALB/c Mice, ” Infect Immun, vol. 74, no. 5, pp. 2734–2741, 2006. doi: DOI:10.1128/IAI.74.5.2734-2741.2006. [CrossRef] [PubMed] [Google Scholar]
  • Y. Gao, C. Pei, X. Sun, C. Zhang, L. Li, and X. Kong, “Plasmid pcDNA3.1-s11 Constructed Based on The S11 Segment of Grass Carp Reovirus as DNA Vaccine Provides Immune Protection, ” Vaccine, vol. 36, no. 25, pp. 3613–3621, 2018. doi: 10.1016/J.VACCINE.2018.05.043. [CrossRef] [PubMed] [Google Scholar]
  • M. T. Shata, M. S. ReitzJr., A. L. DeVico, G. K. Lewis, and D. M. Hone, “Mucosal and systemic HIV-1 Env-specific CD8+ T-cells Develop after Intragastric Vaccination with A Salmonella Env DNA Vaccine Vector, ” Vaccine, vol. 20, no. 3–4, pp. 623–629, 2001. doi: 10.1016/S0264410X(01)00330-9. [CrossRef] [PubMed] [Google Scholar]
  • S. Starodubova, E, V. Kuzmenko, Y, A. Latanova, A, V. Preobrazhenskaya, O, and L. Karpov, V, “Creation of DNA vaccine vector based on codonoptimized gene of rabies virus glycoprotein (G protein) with consensus amino acid sequence, ” Mol. Biol., vol. 50, no. 2, pp. 328–331, Mar. 2016. doi: 10.1134/S0026893316020242. [CrossRef] [Google Scholar]
  • D. J. Laddy, J. Yan, N. Corbitt, G. P. Kobinger, and D. B. Weiner, “Immunogenicity of novel consensus-based DNA vaccines against avian influenza, ” Vaccine, vol. 25, no. 16, pp. 2984–2989, Apr. 2007. doi: 10.1016/j.vaccine.2007.01.063. [CrossRef] [PubMed] [Google Scholar]
  • R. Jannah and L. Unsunnidhal, “KONSTRUKSI DAN KLONING PLASMID PCDNA3 . 1 ( + ) DENGAN SUBGENOTIP B3 HEPATITIS B CORE ANTIGEN ( HbcAg SEBAGAI KANDIDAT VAKSIN DNA HEPATITIS B, ” J. Penelit. dan Kaji. Ilm. Kesehat., vol. 5, no. 2, pp. 125–131, 2019. [Google Scholar]
  • C. Sawaengsak et al., “Intranasal ChitosanDNA Vaccines that Protect Across Influenza Virus Subtypes, ” Int J App Pharm, vol. 473, no. 1–2, pp. 113–125, 2014. doi: 10.1016/j.ijpharm.2014.07.005. [CrossRef] [Google Scholar]
  • Y. Valero et al., “An Oral Chitosan DNA Vaccine Against Nodavirus Improves Transcription of Cell-Mediated Cytotoxicity and Interferon Genes in The European Sea Bass Juveniles Gut and Survival Upon Infection, ” Dev Comp Immunol., vol. 65, pp. 64–72, 2016. doi: 10.1016/j.dci.2016.06.021. [CrossRef] [Google Scholar]
  • T. Huang et al., “Chitosan DNA Nanoparticles Enhanced The Immunogenicity of Multivalent DNA Vaccination on Mice agaInst Trueperella pyogenes Infection, ” J. Nanobiotechnology, vol. 16, no. 8, pp. 1–15, 2018. [CrossRef] [Google Scholar]
  • P. M. Sharp and W. H. Li, “The Codon Adaptation Index–a Measure of Directional Synonymous Codon Usage Bias, and Its Potential Applications, ” Nucleic Acids Res, vol. 15, pp. 1281–1295, 1987. [CrossRef] [PubMed] [Google Scholar]
  • A. E. Gregory, R. Titball, and D. Williamson, “Vaccine Delivery using Nanoparticles, ” Front Cell Infect Mi, vol. 3, p. 13, 2013. doi: 10.3389/fcimb.2013.00013. [Google Scholar]
  • S. Nimesh, M. M. Thibault, M. Lavertu, and M. D. Buschmann, “Enhanced Gene Delivery Mediated by Low Molecular Weight Chitosan/DNA Complexes: Effect of pH and Serum, ” Mol Biotechnol., vol. 46, no. 2, pp. 182–196, 2010. doi: 10.1007/s12033-0109286-1. [CrossRef] [PubMed] [Google Scholar]
  • J. C. Venter et al., “The sequence of the human genome, ” Science (80-. )., vol. 291, pp. 1304–1351, 2001. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.