Open Access
BIO Web Conf.
Volume 41, 2021
The 4th International Conference on Bioinformatics, Biotechnology, and Biomedical Engineering (BioMIC 2021)
Article Number 07004
Number of page(s) 6
Section Drug Development and Nutraceutical
Published online 22 December 2021
  • G. Kertayadnya, G. E. Wilcox, N. Soeharsono, S. Hartaningsih, R. J. Coelen, R. D. Cook, and J. Brownlie, “Characteristics of a retrovirus associated with Jembrana disease in Bali cattle, ” J. Gen. Virol., vol. 74, no. 9, pp. 1765–1773, 1993. doi: [Google Scholar]
  • B. J. Chadwick, R. J. Coelen, G. E. Wilcox, L. M. Sammels, and G. Kertayadnya, “Nucleotide Sequence Analysis of Jembrana Disease Virus : A Bovine Lentivirus Associated with An Acute Disease Syndrome, ” J Gen Virol., vol. 76, pp. 1637–1650, 1995. doi: DOI:10.1099/0022-1317-76-7-1637. [Google Scholar]
  • H. Chen, G. Wilcox, E. Kertayadnya, G, D, and C. Wood, “Characterization of The Jembrana Disease Virus tat Gene and the cisand TransRegulatory Elements in Its Long Terminal Repeats, ” J. Virol., vol. 73, no. 1, pp. 658–666, 1999. [Google Scholar]
  • H. S. Y. Mancebo et al., “P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro, ” Genes Dev., vol. 11, pp. 2633–2644, 1997. [Google Scholar]
  • N. F. Marshall, J. Peng, Z. Xie, D. H. Price, and J. B. Chem, “Control of RNA Polymerase II Elongation Potential by a Novel Carboxylterminal Domain Kinase * tiation activity of positive transcription elongation fac-, ” J. Biol. Chem., vol. 271, no. 43, pp. 27176–27183, 1996. [Google Scholar]
  • Y. Zhu et al., “Transcription elongation factor PTEFb is required for HIV-1 Tat transactivation in vitro, ” Genes Dev., vol. 11, pp. 2622–2632, 1997. [Google Scholar]
  • C. Cheng-Mayer, T. Shioda, and A. Levy, J, “Host Range , Replicative , and Cytopathic Properties of Human Immunodeficiency Virus Type 1 Are Determined by Very Few Amino Acid Changes in tat and gpl20, ” J. Virol., vol. 65, no. 12, pp. 6931–6941, 1991. [Google Scholar]
  • H. Chen, J. U. N. He, S. Fong, and G. Wilcox, “Jembrana Disease Virus Tat Can Regulate Human Immunodeficiency Virus ( HIV ) Long Terminal Repeat-Directed Gene Expression and Can Substitute for HIV Tat in Viral Replication, ” J. Virol., vol. 74, no. 6, pp. 2703–2713, 2000. doi: 10.4161/hv.7.12.17983. [Google Scholar]
  • C. A. Smith, V. Calabro, A. D. Frankel, and S. Francisco, “An RNA-Binding Chameleon, ” Mol. Cell, vol. 6, pp. 1067–1076, 2000. doi: 10.1016/S1097-2765(00)00105-2. [Google Scholar]
  • G. Wang, L. Pan, and Y. Zhang, “Approaches to Improved Targeting of DNA Vaccines, ” Hum Vaccines., vol. 7, pp. 1271–1281, 2011. doi: DOI:10.4161/hv.7.12.17983. [Google Scholar]
  • L. Unsunnidhal, J. Ishak, and A. Kusumawati, “Expression of gag-CA Gene of Jembrana Disease Virus with Cationic Liposomes and Chitosan Nanoparticle Delivery Systems as DNA Vaccine Candidates, ” Trop. Life Sci. Res., vol. 30, no. 3, pp. 15–36, 2019. doi: [Google Scholar]
  • J. Ishak, L. Unsunnidhal, R. Martien, and A. Kusumawati, “In vitro evaluation of chitosanDNA plasmid complex encoding Jembrana disease virus Env-TM protein as a vaccine candidate, ” J. Vet. Res., vol. 63, no. 1, pp. 7–16, 2019. doi: [Google Scholar]
  • F. Corpet, “Multiple Sequence Alignment with Hierarchical Clustering, ” Nucleic Acids Res., vol. 16, no. 22, pp. 10881–10890, 1988. [Google Scholar]
  • J. Williams, “Vector Design for Improved DNA Vaccine Efficacy, Safety and Production, ” Vaccines, vol. 1, no. 3, pp. 225–249, 2013. doi: 10.3390/vaccines1030225. [Google Scholar]
  • D. Luo et al., “Protective Immunity Elicited by A Divalent DNA Vaccine Encoding Both The L7/L12 and Omp16 Genes of Brucella abortus in BALB/c Mice, ” Infect Immun, vol. 74, no. 5, pp. 2734–2741, 2006. doi: DOI:10.1128/IAI.74.5.2734-2741.2006. [Google Scholar]
  • Y. Gao, C. Pei, X. Sun, C. Zhang, L. Li, and X. Kong, “Plasmid pcDNA3.1-s11 Constructed Based on The S11 Segment of Grass Carp Reovirus as DNA Vaccine Provides Immune Protection, ” Vaccine, vol. 36, no. 25, pp. 3613–3621, 2018. doi: 10.1016/J.VACCINE.2018.05.043. [Google Scholar]
  • M. T. Shata, M. S. ReitzJr., A. L. DeVico, G. K. Lewis, and D. M. Hone, “Mucosal and systemic HIV-1 Env-specific CD8+ T-cells Develop after Intragastric Vaccination with A Salmonella Env DNA Vaccine Vector, ” Vaccine, vol. 20, no. 3–4, pp. 623–629, 2001. doi: 10.1016/S0264410X(01)00330-9. [Google Scholar]
  • S. Starodubova, E, V. Kuzmenko, Y, A. Latanova, A, V. Preobrazhenskaya, O, and L. Karpov, V, “Creation of DNA vaccine vector based on codonoptimized gene of rabies virus glycoprotein (G protein) with consensus amino acid sequence, ” Mol. Biol., vol. 50, no. 2, pp. 328–331, Mar. 2016. doi: 10.1134/S0026893316020242. [Google Scholar]
  • D. J. Laddy, J. Yan, N. Corbitt, G. P. Kobinger, and D. B. Weiner, “Immunogenicity of novel consensus-based DNA vaccines against avian influenza, ” Vaccine, vol. 25, no. 16, pp. 2984–2989, Apr. 2007. doi: 10.1016/j.vaccine.2007.01.063. [Google Scholar]
  • R. Jannah and L. Unsunnidhal, “KONSTRUKSI DAN KLONING PLASMID PCDNA3 . 1 ( + ) DENGAN SUBGENOTIP B3 HEPATITIS B CORE ANTIGEN ( HBcAg) SEBAGAI KANDIDAT VAKSIN DNA HEPATITIS B, ” J. Penelit. dan Kaji. Ilm. Kesehat., vol. 5, no. 2, pp. 125–131, 2019. [Google Scholar]
  • C. Sawaengsak et al., “Intranasal ChitosanDNA Vaccines that Protect Across Influenza Virus Subtypes, ” Int J App Pharm, vol. 473, no. 1–2, pp. 113–125, 2014. doi: 10.1016/j.ijpharm.2014.07.005. [Google Scholar]
  • Y. Valero et al., “An Oral Chitosan DNA Vaccine Against Nodavirus Improves Transcription of Cell-Mediated Cytotoxicity and Interferon Genes in The European Sea Bass Juveniles Gut and Survival Upon Infection, ” Dev Comp Immunol., vol. 65, pp. 64–72, 2016. doi: 10.1016/j.dci.2016.06.021. [Google Scholar]
  • T. Huang et al., “Chitosan DNA Nanoparticles Enhanced The Immunogenicity of Multivalent DNA Vaccination on Mice agaInst Trueperella pyogenes Infection, ” J. Nanobiotechnology, vol. 16, no. 8, pp. 1–15, 2018. [Google Scholar]
  • L. D. Pearson, M. L. Poss, and J. C. Demartini, “Animal Lentivirus Vaccines: Problems and Prospects, ” Vet Immunol Immunop, vol. 20, pp. 183–212, 1989. doi: 10.1016/01652427(89)90002-0. [Google Scholar]
  • T. Porebski, B and M. Buckle, A, “Consensus Protein Design, ” Protein Eng Des Sel, vol. 29, no. 7, pp. 245–251, 2016. doi: 10.1093/protein/gzw015. [Google Scholar]
  • T. Porebski, B et al., “Structural and Dynamic Properties that Govern The Stability of An Engineered Fibronectin Type III Domain, ” Protein Eng Des Sel, vol. 28, no. 3, pp. 67–78, 2015. doi: 10.1093/protein/gzv002. [Google Scholar]
  • J. Haas, C. Park, E, and B. Seed, “Codon usage limitation in the expression of HIV-1 envelope glycoprotein, ” Curr. Biol., vol. 6, no. 3, pp. 315–24, Mar. 1996. [Google Scholar]
  • A. E. Gregory, R. Titball, and D. Williamson, “Vaccine Delivery using Nanoparticles, ” Front Cell Infect Mi, vol. 3, p. 13, 2013. doi: 10.3389/fcimb.2013.00013. [Google Scholar]
  • S. Nimesh, M. M. Thibault, M. Lavertu, and M. D. Buschmann, “Enhanced Gene Delivery Mediated by Low Molecular Weight Chitosan/DNA Complexes: Effect of pH and Serum, ” Mol Biotechnol., vol. 46, no. 2, pp. 182–196, 2010. doi: 10.1007/s12033-0109286-1. [Google Scholar]
  • J. C. Venter et al., “The sequence of the human genome, ” Science (80-. )., vol. 291, pp. 1304–1351, 2001. [Google Scholar]
  • A. A. Kharia, A. K. Singhai, and R. Verma, “Formulation and Evaluation of Polymeric Nanoparticles of An Antiviral Drug for Gastroretention, ” Int. J. Pharm. Sci. Nanotechnol., vol. 4, no. 4, pp. 1557–1562, 2012. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.