Open Access
BIO Web Conf.
Volume 68, 2023
44th World Congress of Vine and Wine
Article Number 02023
Number of page(s) 8
Section Oenology
Published online 06 December 2023
  • S.C. Morgan, M. Tantikachornkiat, C.M. Scholl, N.L. Benson, M.A. Cliff, D.M. Durall. The effect of sulfur dioxide addition at crush on the fungal and bacterial communities and the sensory attributes of Pinot gris wines. Int. J. Food Microbiol. 290, 1–14 (2019) [CrossRef] [Google Scholar]
  • P. Ribéreau-Gayon, Y. Glories, A. Maujean, D. Dubourdieu. Handbook of Enology —The Chemistry of Wine Stabilization and Treatments (2nd edition, Vol. 2). John Wiley & Sons (2006) [CrossRef] [Google Scholar]
  • P.C. Tsai, L.D. Araujo, B. Tian. Varietal aromas of Sauvignon Blanc: impact of oxidation and antioxidants used in winemaking. Fermentation 8, 686 (2022) [CrossRef] [Google Scholar]
  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes 12(3894), 286 (2014) [Google Scholar]
  • S. Giacosa, S.R. Segade, E. Cagnasso, A. Caudana, L. Rolle, V. Gerbi, SO2 in wines: Rational use and possible alternatives. In Red wine technology Academic Press 309–321 (2019) [CrossRef] [Google Scholar]
  • R. Ferrer-Gallego, M. Puxeu, E. Nart, L. Martín, I. Andorrà. Evaluation of Tempranillo and Albariño SO2-free wines produced by different chemical alternatives and winemaking procedures. Food Res. Int. 102, 647–657 (2017) [CrossRef] [Google Scholar]
  • A. Vernhet. Red wine clarification and stabilization. In Red wine technology. Academic Press 237–251 (2019) [CrossRef] [Google Scholar]
  • G. Vignali, M. Gozzi, M. Pelacci, R. Stefanini. Non-conventional stabilization for fruit and vegetable juices: overview, technological constraints, and energy cost comparison. Food Bioproc. Tech. 15, 1729–1747 (2022) [CrossRef] [Google Scholar]
  • F.M. Bertolini, G. Morbiato, P. Facco, K. Marszałek, E. Pérez-Esteve, J.L. Benedito, S. Spilimbergo. Optimization of the supercritical CO2 pasteurization process for the preservation of high nutritional value of pomegranate juice. J. Supercrit. Fluids 164, 104914 (2020) [CrossRef] [Google Scholar]
  • S. Spilimbergo, L. Ciola. Supercritical CO2 and N2O pasteurisation of peach and kiwi juice. Int. J. Food Sci. Technol. 45(8), 1619–1625 (2010) [CrossRef] [Google Scholar]
  • G.V. Amaral, E.K. Silva, R.N. Cavalcanti, C.P. Martins, L.G.Z. Andrade, J. Moraes, V.O. Alvarenga, J.T. Guimarães, E.A. Esmerino, M.Q. Freitas, M.C. Silva, R.S.L. Raices, A.S. Sant'Ana, M.A.A. Meireles, A. Cruz. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile. Food Chem. 239, 697–703 (2018) [CrossRef] [Google Scholar]
  • S. Fabroni, M. Amenta, N. Timpanaro, P. Rapisarda. Supercritical carbon dioxide-treated blood orange juice as a new product in the fresh fruit juice market. Innov. Food Sci. Emerg. Technol. 11(3), 477–484 (2010) [CrossRef] [Google Scholar]
  • A.E. Illera, M.T. Sanz, S. Beltrán, R. Melgosa, A.G. Solaesa, M.O. Ruiz, Evaluation of HPCD batch treatments on enzyme inactivation kinetics and selected quality characteristics of cloudy juice from Golden delicious apples. J. Food Eng. 221, 141–150 (2018) [CrossRef] [Google Scholar]
  • N. Smigic, I. Djekic, N. Tomic, B. Udovicki, A. Rajkovic. The potential of foods treated with supercritical carbon dioxide (sc-CO2) as novel foods. Br. Food J. 121(3), 815–834 (2019) [CrossRef] [Google Scholar]
  • Q. Zhang, H. Zheng, J. Lin, G. Nie, X. Fan, J.F. García-Martín, The state-of-the-art research of the application of ultrasound to winemaking: A critical review. Ultrason. Sonochem. 95, 106384 (2023) [CrossRef] [Google Scholar]
  • C. Delso, A. Berzosa, J. Sanz, I. Álvarez, J. Raso. Pulsed electric field processing as an alternative to sulfites (SO2) for controlling Saccharomyces cerevisiae involved in the fermentation of Chardonnay white wine. Food Res. Int. 165, 112525 (2023) [CrossRef] [Google Scholar]
  • C. Cejudo, L. Casas, C. Mantel, E. Martínez de la Ossa. Supercritical impregnation of food packaging films to provide antioxidant properties. J. Supercrit. Fluids 128, 200–207 (2017) [CrossRef] [Google Scholar]
  • I. Loira, A. Morata, M.A. Bañuelos, A. Puig-Pujol, B. Guamis, C. González, J.A. SuárezLepe. Use of Ultra-High Pressure Homogenization processing in winemaking: Control of microbial populations in grape musts and effects in sensory quality. Innov. Food Sci. Emerg. Technol. 50, 50–56 (2018) [CrossRef] [Google Scholar]
  • S. Damar, M.O. Balaban. Review of dense phase CO2 technology: microbial and enzyme inactivation, and effects on food quality. J. Food Sci. 71(1), R1–R11 (2006) [CrossRef] [Google Scholar]
  • H. Briongos, A.E. Illera, M.T. Sanz, R. Melgosa, S. Beltrán, A.G. Solaesa. Effect of high pressure carbon dioxide processing on pectin methylesterase activity and other orange juice properties. LWT - Food Sci. Technol. 74, 411–419 (2016) [CrossRef] [Google Scholar]
  • M. Guo, J. Wu, Y. Xu, G. Xiao, M. Zhang, Y. Chen. Effects on microbial inactivation and quality attributes in frozen lychee juice treated by supercritical carbon dioxide. Eur. Food Res. Technol. 232(5), 803–811 (2011) [CrossRef] [Google Scholar]
  • K. Marszałek, S. Skąpska, L. Woźniak, B. Sokołowska. Application of supercritical carbon dioxide for the preservation of strawberry juice: Microbial and physicochemical quality, enzymatic activity and the degradation kinetics of anthocyanins during storage. Innov. Food Sci. Emerg. Technol. 32, 101–109 (2015) [CrossRef] [Google Scholar]
  • M.K. Oulé, K. Tano, A.-M. Bernier, J. Arul. Escherichia coli inactivation mechanism by pressurized CO2. Can. J. Microbiol. 52, 1208–1217 (2006) [CrossRef] [PubMed] [Google Scholar]
  • H.G. Yuk, F. Sampedro, X. Fan, D.J. Geveke. Nonthermal processing of orange juice using a pilot‐plant scale supercritical carbon dioxide system with a gas–liquid metal contactor. J. Food Process. Preserv., 38(1) 630–638 (2014) [CrossRef] [Google Scholar]
  • E.K. Silva, H.S. Arruda, M.N. Eberlin, G. Pastore, M.A.A. Meireles Effects of supercritical carbon dioxide and thermal treatment on the inulin chemical stability and functional properties of prebiotic-enriched apple juice. Food Res. Int. 125, 108561 (2019) [CrossRef] [Google Scholar]
  • F.J. Barba, L.R. Mariutti, N. Bragagnolo, A.Z. Mercadante, G.V. Barbosa-Canovas, V. Orlien. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends Food Sci. Technol. 67, 195–206 (2017) [CrossRef] [Google Scholar]
  • W.F. Gomes, B.K. Tiwari, O. Rodriguez, E.S. de Brito, F.A.N. Fernandes, S. Rodrigues. Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food chem. 218, 261–268 (2017) [CrossRef] [Google Scholar]
  • L. Liu, Q. Zeng, R. Zhang, Z. Wei, Y. Deng, Y. Zhang, X. Tang, M. Zhang. Comparative study on phenolic profiles and antioxidant activity of litchi juice treated by high pressure carbon dioxide and thermal processing. Food Sci. Technol. Res 21(1), 41–49 (2015) [CrossRef] [Google Scholar]
  • D. del Pozo-Insfran, M.O. Balaban, S.T. Talcott. Inactivation of polyphenol oxidase in muscadine grape juice by dense phase-CO2 processing. Food Res. Int. 40(7), 894–899 (2007) [CrossRef] [Google Scholar]
  • A. Murtaza, A. Iqbal, Z. Linhu, Y. Liu, X. Xu, S. Pan, W. Hu. Effect of highpressure carbon dioxide on the aggregation and conformational changes of polyphenol oxidase from apple (Malus domestica) juice. Innov. Food Sci. Emerg. Technol. 54, 43–50 (2019) [CrossRef] [Google Scholar]
  • G.V. Amaral, E.K. Silva, R.N. Cavalcanti, L.P. Cappato, J.T. Guimaraes, V.O. Alvarenga, E.A. Esmerino, J.B. Portela, A.S. Sant’Ana, M.Q. Freitas, M.C. Silva, R.S.L. Raices, M.A.A. Meireles, A.G. Cruz. Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends Food Sci. Technol. 64, 94–101 (2017) [CrossRef] [Google Scholar]
  • S.R. Kim, M.S. Rhee, B.C. Kim, H. Lee, K.H. Kim. Modeling of the inactivation of Salmonella typhimurium by supercritical carbon dioxide in physiological saline and phosphate-buffered saline. J Microbiol. Methods. 70, 132–141 (2007) [CrossRef] [Google Scholar]
  • J. Li, A. Wang, F. Zhu, R. Xu, X. Song Hu. Membrane Damage Induced by Supercritical Carbon Dioxide in Rhodotorula mucilaginosa. Indian J. Microbiol. 53(3), 352–358 (2013) [CrossRef] [PubMed] [Google Scholar]
  • C.C. Ong, Y.-H. Chen. Investigation on cell disruption techniques and supercritical carbon dioxide extraction of Mortierella alpina lipid. Foods 11(4), 582 (2022) [CrossRef] [PubMed] [Google Scholar]
  • F. Gasperi, E. Aprea, F. Biasioli, S. Carlin, I. Endrizzi, G. Pirretti, S. Spilimbergo. Effects of supercritical CO2 and N2O pasteurisation on the quality of fresh apple juice. Food chem. 115(1), 129–136 (2009) [CrossRef] [Google Scholar]
  • A. Romano, M.C. Perello, A. Lonvaud-Funel, G. Sicard, G. de Revel. Sensory and analytical re-evaluation of “Brett character”. Food Chem. 114, 15–19 (2009) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.