Open Access
BIO Web Conf.
Volume 68, 2023
44th World Congress of Vine and Wine
Article Number 04021
Number of page(s) 10
Section Health
Published online 23 November 2023
  • Cugnetto A., Altare M., Masoero G., Guidoni S. (2023). Monitoring the seeds phenolic maturity in Nebbiolo vineyard by means of NDVI index vs foliar NIR spectroscopy. GEOdaysIT-BARI [Google Scholar]
  • G. Masoero (2022). Valorizzazione di Vezzolano e Albugnano con le Ricerche dell’Accademia di Agricoltura. Siro [Google Scholar]
  • Norberto Roveri. The role of biomimetism in developing nanostructured inorganic matrices for drug delivery [Google Scholar]
  • Qin, J., Chao, K., Kim, M.S., Lu, R., & Burks, T.F. (2013). Hyperspectral and multispectral imaging for evaluating food safety and quality. Journal of Food Engineering [Google Scholar]
  • Pierce, F.J., & Nowak, P. (1999). Aspects of precision agriculture. In Advances in agronomy (67, pp. 1–85) [Google Scholar]
  • Ollinger, S.V. (2011). Sources of variability in canopy reflectance and the convergent properties of plants. New Phytologist [Google Scholar]
  • Lichtenthaler, Hartmut K. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy [Google Scholar]
  • Knipling, E.B. (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote sensing of environment 1(3), 155–159 [Google Scholar]
  • Gutschick, V.P. (1999). Biotic and abiotic consequences of differences in leaf structure. The New Phytologist 143(1), 3–18 [CrossRef] [Google Scholar]
  • Gianquinto, G., Orsini, F., Sambo, P., & D'Urzo, M. P. (2011). The use of diagnostic optical tools to assess nitrogen status and to guide fertilization of vegetables. HortTechnology 21(3), 287–292 [CrossRef] [Google Scholar]
  • Gebbers, R., & Adamchuk, V.I. (2010). Precision agriculture and food security. Science [Google Scholar]
  • Daughtry, C.S., Walthall, C.L., Kim, M.S., De Colstoun, E.B., & McMurtrey Iii, J.E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of Environment [Google Scholar]
  • Benyamin Hosseiny, Heidar Rastiveis, Saeid Homayouni. An Automated Framework for Plant Detection Based on Deep Simulated Learning from Drone Imagery. Remote Sensing 12, No. 21 [Google Scholar]
  • Konstantinos P. Ferentinos. Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145 [Google Scholar]
  • Jayme Garcia Arnal Barbedo. Plant disease identification from individual lesions and spots using deep learning. Biosystems Engineering, 180 [Google Scholar]
  • Koushik Nagasubramanian, Sarah Jones, Asheesh K. Singh, Soumik Sarkar, Arti Singh, Baskar Ganapathysubramanian. Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods 15, No. 98 [PubMed] [Google Scholar]
  • Casa R. (a cura di). Agricoltura di Precisione. Metodi e tecnologie per migliorare l’efficienza e la sostenibilità dei sistemi colturali. Edagricole, Bologna [Google Scholar]
  • Xue J., Su B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors, Hindawi [Google Scholar]
  • Sankaran S., Mishra A., Ehsani R., Davis C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture [Google Scholar]
  • Rumpf T., Mahlein A.-K., Steiner U., Oerke E.-C., Dehne H.-W., Plümer L. (2010). Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Computers and Electronics in Agriculture [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.