Open Access
Issue
BIO Web Conf.
Volume 96, 2024
The 2nd Unhas International Conference on Agricultural Technology (UICAT 2023)
Article Number 01008
Number of page(s) 13
Section The Science of Food
DOI https://doi.org/10.1051/bioconf/20249601008
Published online 27 March 2024
  • A. A. Gonçalves and J. dos Santos, “Shrimp processing residue as an alternative ingredient for new product development,” Int J Food Sci Technol, 54, 9 (2019). [Google Scholar]
  • T. A. Trabold and D. Rodríguez Alberto, “Valorization of food processing by-products via biofuel production,” in Sustainability of the Food System: Sovereignty, Waste, and Nutrients Bioavailability, Elsevier Inc., (2020). [Google Scholar]
  • F. J. Andriamanohiarisoamanana, S. Yasui, T. Yamashiro, V. Ramanoelina, I. Ihara, and K. Umetsu, “Anaerobic co-digestion: a sustainable approach to food processing organic waste management,” J Mater Cycles Waste Manag, 22, 5 (2020). [Google Scholar]
  • O. Sydorenko and O. Petrova, “Directions for the Use of <i>Palaemon adspersus</i> Shrimp in Food Technology,” IJFST, 6, 2 (2021). [Google Scholar]
  • Z. Liu et al., “Comparison of the proximate composition and nutritional profile of byproducts and edible parts of five species of shrimp,” Foods, 10, 11 (2021). [Google Scholar]
  • N. P. Nirmal, C. Santivarangkna, M. S. Rajput, and S. Benjakul, “Trends in shrimp processing waste utilization: An industrial prospective,” Trends in Food Science and Technology, 103 (2020). [CrossRef] [Google Scholar]
  • S. M. Singh, “Shrimp Waste Powder – Potential as Protein Supplement,” Int J Pure Appl Biosci, 6, 6 (2018). [CrossRef] [Google Scholar]
  • N. Trianjari, A. Amiruddin, and S. Ardiana, “Pengaruh Species Udang Terhadap Rendemen yang Dihasilkan HeadLess dan Peeled Tain On Effect of Species on Yield Produced on Head Less and Peeled Tain On Shrimp,” Jurnal Pendidikan Teknologi Pertanian, 8, 2 (2022). [Google Scholar]
  • S. Wu et al., “Change regularity of taste and the performance of endogenous proteases in shrimp (Penaens vannamei) head during autolysis,” Foods, 10, no. 5, (2021). [Google Scholar]
  • E. G. Fadhallah, D. Koesoemawardani, and L. Indraningtyas, “Chemical Properties of Liquid Broth Extracted from Freshwater and Marine Shrimp Shells Waste,” 12, 2 (2023). [Google Scholar]
  • N. P. Nirmal and S. Benjakul, “Biochemical properties of polyphenoloxidase from the cephalothorax of Pacific white shrimp (Litopenaeus vannamei),” Int Aquat Res, 4, 1 (2012). [Google Scholar]
  • D. N. A. T. Meiyani, H. R. Putut, and A. D. Anggo, “Utilization of white shrimp (Penaeus merguiensis) head boiled as flavoring powder with maltodextrin added,” Jurnal Pengolahan dan Bioteknologi Hasil Perikanan, 3, 2 (2014). [Google Scholar]
  • R. A. Bassig, A. V. Obinque, V. T. Nebres, V. H. Delos Santos, D. M. Peralta, and A. J. J. Madrid, “Utilization of Shrimp Head Wastes into Powder Form as Raw Material for Value-Added Products,” Philippine Journal of Fisheries, 28, 2 (2021). [Google Scholar]
  • Z. A. Maryam Adilah, B. Jamilah, and Z. A. Nur Hanani, “Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging,” Food Hydrocoll, 74 (2018) [Google Scholar]
  • N. M. Sachindra and N. S. Mahendrakar, “Effect of protease treatment on oil extractability of carotenoids from shrimp waste,” Journal of Aquatic Food Product Technology, 20, 1 (2011). [Google Scholar]
  • J. M. de J. Rodríguez-Jiménez, E. Montalvo-González, U. M. López-García, J. C. Barros-Castillo, J. A. Ragazzo-Sánchez, and M. de L. García-Magaña, “Guamara and Cocuixtle: Source of Proteases for the Transformation of Shrimp By-Products into Hydrolysates with Potential Application,” Biology (Basel), 12, 5 (2023). [Google Scholar]
  • S. Ahmadkelayeh, S. K. Cheema, and K. Hawboldt, “Evaluation of conventional solvent processes for lipid and astaxanthin extraction from shrimp processing by-products,” Chem Eng Commun, 210, 3 (2023). [Google Scholar]
  • S. Gulzar, N. Raju, R. Chandragiri Nagarajarao, and S. Benjakul, “Oil and pigments from shrimp processing by-products: Extraction, composition, bioactivities and its application- A review,” Trends Food Sci Technol, 100 (2020). [Google Scholar]
  • T. S. Trung and A. Pham Thi Dan Phuong, “Bioactive Compounds from By-Products of Shrimp Processing Industry in Vietnam,” J Food Drug Anal, 20, 1 (2012). [Google Scholar]
  • X. Mao, N. Guo, J. Sun, and C. Xue, “Comprehensive utilization of shrimp waste based on biotechnological methods: A review,” Journal of Cleaner Production, 143 (2017). [PubMed] [Google Scholar]
  • G. Yuan, W. Li, Y. Pan, C. Wang, and H. Chen, “Shrimp shell wastes: Optimization of peptide hydrolysis and peptide inhibition of α-amylase,” Food Biosci, 25 (2018). [Google Scholar]
  • P. Kandra, M. M. Challa, and H. Kalangi Padma Jyothi, “Efficient use of shrimp waste: Present and future trends,” Applied Microbiology and Biotechnology, 93, 1 (2012. [PubMed] [Google Scholar]
  • N. Suryawanshi and J. S. Eswari, “Shrimp shell waste as a potential raw material for biorefinery—a revisit,” Biomass Convers Biorefin, 12, 5 (2022). [Google Scholar]
  • A. Elhussieny, M. Faisal, G. D’Angelo, N. T. Aboulkhair, N. M. Everitt, and I. S. Fahim, “Valorisation of shrimp and rice straw waste into food packaging applications,” Ain Shams Engineering Journal, 11, 4 (2020). [Google Scholar]
  • P. A. Aneesh, R. Anandan, L. R. G. Kumar, K. K. Ajeeshkumar, K. A. Kumar, and S. Mathew, “A step to shell biorefinery—Extraction of astaxanthin-rich oil, protein, chitin, and chitosan from shrimp processing waste,” Biomass Convers Biorefin, 13, 1 (2023). [Google Scholar]
  • D. Titik, H. Susanto, and N. Rokhati, “Influence of Microwave Irradiation on Extraction of Chitosan from Shrimp Shell Waste, Reaktor,” 18, 1 (2018). [Google Scholar]
  • A. Jafari, S. Gharibi, F. Farjadmand, and P. Sadighara, “Extraction of shrimp waste pigments by enzymatic and alkaline treatment: Evaluation by inhibition of lipid peroxidation,” J Mater Cycles Waste Manag, 14, 4 (2012). [Google Scholar]
  • Z. M. Jeddi, G. Jahed Khaniki, and P. Sadighara, “Optimization of extraction of carotenoids from shrimp waste,” Glob Vet, 10, 6 (2013). [Google Scholar]
  • N. M. Sachindra and N. S. Mahendrakar, “Stability of carotenoids recovered from shrimp waste and their use as colorant in fi sh sausage,” (2009). [Google Scholar]
  • P. W. D. Rengga, K. A. Salsabiil, Harianingsih, S. E. Oktavia, and M. Ansori, “Flavored powder from shrimp shells with bromelain enzymatic process and adding of flour and spices,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Nov. (2019). [Google Scholar]
  • T. M. Fernandes, J. A. da Silva, A. H. A. da Silva, J. M. de O. Cavalheiro, and e. M. L. da Conceição, “Flour production from shrimp by-products and sensory evaluation of flour-based products,” Pesqui Agropecu Bras, 48, 8 (2013). [Google Scholar]
  • A. Maryam, H. Program Studi Agroindustri Pangan, J. Agribisnis, and P. Negeri Sambas, “Analisis Kimia Dan Organoleptik Bubuk Penyedap Rasa Berbasis Limbah Udang (Fenneropenaeus Merguiensis) Sebagai Alternatif Penyedap Alami Chemical And Organoleptic Analysis Of Shrimp (Fenneropenaeus merguiensis) Waste-Based Flavoring Powder As Alternative To Natural-Flavoring,” (2023). [Google Scholar]
  • S. Gulzar, N. Raju, R. Chandragiri Nagarajarao, and S. Benjakul, “Oil and pigments from shrimp processing by-products: Extraction, composition, bioactivities and its application- A review,” Trends in Food Science and Technology, 100 (2020). [Google Scholar]
  • T. Yuniarti, A. Prayudi, L. Supenti, H. Suhrawardan, and P. Martosuyono, “Produksi dan Profil Kimia Hidrolisat Protein dari Hasil Samping Pengolahan Udang Segar,” Jurnal Perikanan Universitas Gadjah Mada, 23, 1 (2021). [Google Scholar]
  • H. J. A. Guerrero et al., “Plasticized, greaseproof chitin bioplastics with high transparency and biodegradability,” Food Hydrocoll, 145 (2023). [PubMed] [Google Scholar]
  • R. Rahman, “Bioplastics for Food Packaging: A Review,” Int J Curr Microbiol Appl Sci, 8, 03 (2019). [Google Scholar]
  • C. G. Otoni, H. M. C. Azeredo, B. D. Mattos, M. Beaumont, D. S. Correa, and O. J. Rojas, “The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues,” Advanced Materials, 33, 43 (2021). [Google Scholar]
  • A. Purwanti and M. Yusuf, “EVALUASI PROSES PENGOLAHAN LIMBAH KULIT UDANG UNTUK MENINGKATKAN MUTU KITOSAN YANG DIHASILKAN,” (2014). [Google Scholar]
  • Sachindra, N. Bhaskar, and N. S. Mahendrakar, “Recovery of carotenoids from shrimp waste in organic solvents,” Waste Manag, 26 (2006). [Google Scholar]
  • A. D. Patil, P. J. Kasabe, and P. B. Dandge, “Pharmaceutical and nutraceutical potential of natural bioactive pigment: astaxanthin,” Natural Products and Bioprospecting, 12, 1 (2022). [CrossRef] [PubMed] [Google Scholar]
  • M. L. Maia, C. Grosso, M. F. Barroso, A. Silva, C. Delerue-Matos, and V. F. Domingues, “Bioactive Compounds of Shrimp Shell Waste from Palaemon serratus and Palaemon varians from Portuguese Coast,” Antioxidants, 12, no. 2, Feb. (2023) [Google Scholar]
  • M. Mauludia, T. Usman, W. Rahmalia, D. Imam Prayitno, and S. Nani Nurbaeti, “Ekstraksi, Karakterisasi dan Uji Aktivitas Antioksidan Astaxanthin dari Produk Fermentasi Udang (Cincalok),” Jurnal Kelautan Tropis, 24, 3 (2021). [Google Scholar]
  • M. Guerin, M. Huntley, and M. Olaizola, “Guerin, M., Huntley, M. E. & Olaizola, M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21, 210-216,” Trends Biotechnol, 21 (2003). [CrossRef] [PubMed] [Google Scholar]
  • M. Hatta, Farah Ayuni, and R. Othman, “Carotenoids as potential biocolorants: A case study of astaxanthin recovered from shrimp waste,” (2019). [Google Scholar]
  • S. Oh, Y. J. Kim, E. K. Lee, S. W. Park, and H. G. Yu, “Antioxidative effects of ascorbic acid and astaxanthin on arpe-19 cells in an oxidative stress model,” Antioxidants, 9, 9 (2020). [Google Scholar]
  • M. Sundalian, S. G. Sri Gustini, and F. F. Rishadi, “Kajian Metode Ekstraksi dan Analisis Senyawa Astaxanthin yang Terkandung dalam Udang,” Jurnal Sains dan Kesehatan, 3, 4 (2021). [Google Scholar]
  • F. M. E. Zavaleta, R. Jiménez Pichardo, A. Tomasini, and I. Guerrero-Legarreta, “Astaxanthin Extraction from Shrimp Wastes and its Stability in 2 Model Systems,” J Food Sci, 75 (2010). [Google Scholar]
  • T. Supriyatin, D. Aprillia, and S. Asih, “Pemanfaatan limbah kepala dan kulit udang sebagai penyedap rasa alami,” Jurnal Pengabdian Masyarakat, 6, 3, (2023). [Google Scholar]
  • C. A. Tamaya, Y. Sastro Darmanto, and A. Dwi Anggo, “Characteristics of Flavor Enhancers Made from Different Types of Fish Broth with Addition of Cornstarch,” (2020). [Google Scholar]
  • A. Istiqamah, H. N. Lioe, and D. R. Adawiyah, “Umami compounds present in low molecular umami fractions of asam sunti – A fermented fruit of Averrhoa bilimbi L.,” Food Chem, 270 (2019). [Google Scholar]
  • A. Maulana and H. F. Artahsasta, “Pemanfaatan Kacang Kedelai Sebagai Pengganti Ayam Dalam Pembuatan Penyedap Rasa,” Jurnal Teknologi Pangan dan Hasil Pertanian, 15, 1 (2020). [Google Scholar]
  • Diode. Yonata and M. Y. Nurhidajah, Boby Pranata, “Pengembangan Penyedap Rasa Alami Dari Cangkang Rajungan Dengan Metode Foam-Mat Dryng,” Jurnal Teknologi Industri Pertanian, 5, 1 (2021). [Google Scholar]
  • L. A. Wicaksono and S. Winarti, “Karakteristik Penyedap Rasa Alami dari Biji Bunga Matahari dan Kupang Putih dengan Hidrolisis Enzimatis,” AGRITEKNO: Jurnal Teknologi Pertanian, 10, 1 (2021). [Google Scholar]
  • M. A. Djohar, S. M. Timbowo, and F. Mentang, “Tingkat Kesukaan Panelis Terhadap Penyedap Rasa Alami Hasil Samping Perikanan Dengan Edible Coating Dari Karagenan,” Media Teknologi Hasil Perikanan, 6, 2 (2018). [Google Scholar]
  • Suparmi, Edison, N. I. Sari, Sumarto, and R. Susilo, “Study on the Quality of Natural Flavor Powder made from Shrimp Waste,” IOP Conf Ser Earth Environ Sci, 430, 1 (2020). [Google Scholar]
  • A. A. Gonçalves and J. dos Santos, “Shrimp processing residue as an alternative ingredient for new product development,” Int J Food Sci Technol, 54, 9 (2019). [Google Scholar]
  • Suparyanto dan Rosad, “Karakteristik Mutu Kadar Air , Kadar Abu dan Organoleptik Pada Penyedap Rasa Instan,” Suparyanto dan Rosad 2015, 5, 3, (2020). [Google Scholar]
  • C. Perdani, R. R. Mawarni, L. Mahmudah, and S. Gunawan, “Prinsip-Prinsip Bahan Tambahan Pangan Yang Memenuhi Syarat Halal: Alternatif Penyedap Rasa Untuk Industri Makanan Halal,” Halal Research Journal, 2, 2 (2022). [Google Scholar]
  • T. Yuniarti, “Potensi Hasil Samping Industri Perikanan Sebagai Sumber Bahan Baku Produk Penyedap Rasa Alami [Potentially of Fishery Industrial by-Product As A Source of Raw Materials for Natural,” (2019). [Google Scholar]
  • S. Karomah, S. Haryati, and S. Sudjatinah, “Pengaruh Perbedaan Konsentrasi Ekstrak Karapas Udang Terhadap Sifat Fisikokimia Kaldu Bubuk yang Dihasilkan,” Jurnal Teknologi Pangan dan Hasil Pertanian, 16, 1 (2021). [Google Scholar]
  • A. O. W. Kaya et al., “PERBANDINGAN KOMPOSISI KIMIA PERISA TULANG IKAN TUNA (Thunnus albacares) DAN KULIT UDANG ( Litopenaeus vannamei) Comparison of the Chemical Composition of Tuna Bone and Shrimp Shells Flavoring,” (2021). [Google Scholar]
  • W. T. Sulistyaningrum, E. Araina, and P. Nilai Tambah, “Peningkatan Nilai Tambah Limbah Cangkang Kulit Udang Menjadi Kaldu Bubuk,” (2023). [Google Scholar]
  • P. Wirawan and I. N. Sari, “Utilization Flour Of White Shrimp Shell (Litopenaeus Vannamei) As Flavor With Addition Of Dextrin And Aplication In Taro Chips,” (2015). [Google Scholar]
  • L. Dewi, I. Manurung, and E. Siregar, “Pembuatan Flavor Limbah Udang (Panaeus Monodon) Dengan Komposisi Bumbu Yang Berbeda,” (2014). [Google Scholar]
  • B. Aulia, F. Mulfiza, and A. Putri, “Pembuatan Penyedap Rasa Alami (bubuk Flavor) dari Kulit Ikan dan Udang,” (2023). [Google Scholar]
  • A. Scurria et al., “High Yields of Shrimp Oil Rich in Omega-3 and Carotenoids: Extending to Shrimp Waste the Circular Economy Approach to Fish Oil Extraction,” (2020). [Google Scholar]
  • A. Chauhan, P. Yadav, and M. Alsebaeai, “Omega-3 Fatty Acid from Plant Sources and Its Application in Food Technology,” (2020). [Google Scholar]
  • I. Phadtare, H. Vaidya, K. Hawboldt, and S. K. Cheema, “Shrimp oil extracted from shrimp processing by-product is a rich source of omega-3 fatty acids and astaxanthin-esters, and reveals potential anti-adipogenic effects in 3T3-L1 adipocytes,” Mar Drugs, 19, 5 (2021). [Google Scholar]
  • P. Sadighara, F. H. Ardabili, and V. Kazemi, “Extraction of shrimp waste oil and its fortification with shrimp waste pigments,” (2015). [Google Scholar]
  • W. Taniyo, Y. K. Salimi, and H. Iyabu, “The Protein Hydrolyzate Antioxidant Characteristics and Activities of Nike Fish (Awaous melanocephalus),” (2021). [Google Scholar]
  • N. M. Puspawati, P. P. Dewi, N. W. Bogoriani, and N. K. Ariati, “Produksi Hidrolisat Protein Antioksidan Melalui Hidrolisis Enzimatik Protein Kulit Ayam Broiler dengan Enzim Papain,” Jurnal Kimia, (2020). [Google Scholar]
  • P. Ambigaipalan and F. Shahidi, “Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities,” J Funct Foods, 34 (2017) [CrossRef] [Google Scholar]
  • I. Petrova, I. Tolstorebrov, and T. M. Eikevik, “Production of fish protein hydrolysates step by step: technological aspects, equipment used, major energy costs and methods of their minimizing,” International Aquatic Research, 10, 3 (2018). [Google Scholar]
  • M. Nasri, “Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review,” in Advances in Food and Nutrition Research, 81 (2017) [Google Scholar]
  • N. Wisuthiphaet, S. Klinchan, and S. Kongruang, “Fish Protein Hydrolysate Production by Acid and Enzymatic Hydrolysis,” King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology (2016). [Google Scholar]
  • S. Fernando, T. U. Jayawardena, and J. Wu, “Marine proteins and peptides: Production, biological activities, and potential applications,” Food Innovation and Advances, 2 (2023). [Google Scholar]
  • M. Nurilmala, T. Nurhayati, and R. Roskananda, “Limbah Industri Filet Ikan Patin untuk Hidrolisat Protein,” (2018). [Google Scholar]
  • D. E. R. J. S. Castro and H. H. Sato, “Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries,” Food Research International, 74 (2015). [Google Scholar]
  • E. Krishnamoorthy, N. Vate, and S. Aswathnaryan, “Antioxidant and Functional Properties of Fish Protein Hydrolysates from Fresh Water Carp (Catla catla) as Influenced by the Nature of Enzyme,” J Food Process Preserv, 38 (2014). [Google Scholar]
  • S. N. Asare, F. Gruber Ijong, J. Rieuwpassa, and N. P. Setiawati, “Penambahan Hidrolisat Protein IKAN Lemuru (Sardinella lemuru) pada Pembuatan Biskuit,” (2018). [Google Scholar]
  • S. Klomklao and S. Benjakul, “Protein hydrolysates prepared from the viscera of skipjack tuna (Katsuwonus pelmamis): Antioxidative activity and functional properties,” Turk J Fish Aquat Sci, 18 (2018). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.