Open Access
Issue |
BIO Web Conf.
Volume 101, 2024
The 5th International Conference on Life Sciences and Biotechnology (ICOLIB 2023)
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 14 | |
Section | Health & Medicine | |
DOI | https://doi.org/10.1051/bioconf/202410104002 | |
Published online | 09 April 2024 |
- D. Guerrero, T. Cantaert, D. Missé, Aedes Mosquito Salivary Components and Their Effect on the Immune Response to Arboviruses. Front Cell Infect Microbiol. 10 (2020). [Google Scholar]
- S. Wathon, W. Purwati, R. Oktarianti, K. Senjarini, IgG Immune Response Against Salivary Gland Protein Extract of Dengue Vector Aedes aegypti, JABS. 16, 3 (2022). [Google Scholar]
- R. Oktarianti, D. R. Damara, S.-R. Qudsiyah, S. Wathon, K. Senjarini, In vitro analysis of human immune response (IgG) against salivary gland extract of dengue vector from dengue hemorrhagic fever (DHF) endemic area in Jember, Indonesia. IOP Conf. Ser.: Earth Environ. Sci. 913, 012090 (2021). https://doi.org/10.1088/1755-1315/913/1/012090 [CrossRef] [Google Scholar]
- J.-S. Clinton, M. B. Vogt, A. R. Kneubehl, B. M. Hibl, S. Paust, R. Rico-Hesse, Sialokinin in mosquito saliva shifts human immune responses towards intracellular pathogens. PLoS Negl Trop Dis. 17, e0011095 (2023). https://doi.org/10.1371/journal.pntd.0011095 [CrossRef] [Google Scholar]
- A. Marín-López, H. Raduwan, T.-Y. Chen, S. Utrilla-Trigo, D.-P. Wolfhard, E. Fikrig, Mosquito Salivary Proteins and Arbovirus Infection: From Viral Enhancers to Potential Targets for Vaccines. Pathogens. 12, 3 (2023). https://doi.org/10.3390/pathogens12030371 [Google Scholar]
- O. López-Cuevas, J.-P. González-Gómez, J.-R. Aguirre-Sánchez, B. Gomez-Gil, E.-H. Torres-Montoya, J.-A. Medrano-Félix, C.-I. Martínez-Rodríguez, N. Castro-del Campo, C. Chaidez, Genomic Characterization of Twelve Lytic Bacteriophages Infecting Midgut Bacteria of Aedes aegypti. Curr Microbiol 79, 385 (2022). https://doi.org/10.1007/s00284-022-03092-0 [CrossRef] [PubMed] [Google Scholar]
- Aisyah, R. Oktarianti, K. Senjarini, S. Wathon, Humoral Immune Response (IgG) of BALB/c Mice (Mus musculus) Post-injection by 56 kDa Immunogenic Protein Extract from the Salivary Glands of Aedes aegypti L. 4th International Conference on Life Sciences and Biotechnology (ICOLIB 2021), Atlantis Press. 157-167 (2022). https://doi.org/10.2991/978-94-6463-062-6_16 [Google Scholar]
- S. Wichit, P. Ferraris, V. Choumet, D. Missé, The effects of mosquito saliva on dengue virus infectivity in humans. Curr Opin Virol. 21, 139-145 (2016). https://doi.org/10.1016/j.coviro.2016.10.001 [CrossRef] [Google Scholar]
- A. Chowdhury, C.-M. Modahl, D. Missé, R.-M. Kini, J. Pompon, High resolution proteomics of Aedes aegypti salivary glands infected with either dengue, Zika or chikungunya viruses identify new virus specific and broad antiviral factors. Sci Rep. 11, 23696 (2021). https://doi.org/10.1038/s41598-021-03211-0 [CrossRef] [Google Scholar]
- R. Oktarianti, A. Suhardiansyah, E. Erni, S. Wathon, K. Senjarini, The Apyrase Functional Properties of the 56 kDa Protein from Aedes aegypti Salivary Gland. 4th International Conference on Life Sciences and Biotechnology (ICOLIB 2021), Atlantis Press. 135-143 (2022). https://doi.org/10.2991/978-94-6463-062-6_14 [Google Scholar]
- G. Shrivastava, P.-C. Valenzuela-Leon, A.-C. Chagas, O. Kern, K. Botello, Y. Zhang, I. Martin-Martin, M.-B. Oliveira, L. Tirloni, E. Calvo, Alboserpin, the Main Salivary Anticoagulant from the Disease Vector Aedes albopictus, Displays Anti-FXa-PAR Signaling In Vitro and In Vivo. ImmunoHorizons. 6, 373-383 (2022). https://doi.org/10.4049/immunohorizons.2200045 [CrossRef] [Google Scholar]
- Z. Li, C. Ji, J. Cheng, M. Åbrink, T. Shen, X. Kuang, Z. Shang, J. Wu, Aedes albopictus salivary proteins adenosine deaminase and 34k2 interact with human mast cell specific proteases tryptase and chymase. Bioengineered 13, 13752-13766 (2022). https://doi.org/10.1080/21655979.2022.2081652 [CrossRef] [PubMed] [Google Scholar]
- M.-J. Conway, B. Londono-Renteria, A. Troupin, A. M. Watson, W.-B. Klimstra, E. Fikrig, T.-M. Colpitts, Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection. PLoS Negl Trop Dis. 10, e0004941 (2016). https://doi.org/10.1371/journal.pntd.0004941 [CrossRef] [Google Scholar]
- P.-H. Alvarenga, P.-H. Alvarenga, D.-R. Dias, X. Xu, I.-M. Francischetti, A.-G. Gittis, G. Arp, D.-N. Garboczi, J.-M. Ribeiro, J.-F. Andersen, Functional aspects of evolution in a cluster of salivary protein genes from mosquitoes. Insect Biochem. Mol. Biol. 146, 103785 (2022). https://doi.org/10.1016/j.ibmb.2022.103785 [CrossRef] [Google Scholar]
- K. Senjarini, S. Atmandaru, A.-S. Nugraha, S. Wathon, R. Oktarianti, In Silico Study of Antigenicity and Immunogenicity of the D7 Protein from Salivary Glands of Aedes aegypti. 4th International Conference on Life Sciences and Biotechnology (ICOLIB 2021), Atlantis Press. 588-595 (2022). https://doi.org/10.2991/978-94-6463-062-6_60 [Google Scholar]
- I. Zakiyyah, L.-D. Santika, S. Wathon, K. Senjarini, R. Oktarianti, Electroelution of 31 kDa Immunogenic Protein Fraction from the Salivary Gland of Aedes aegypti and Aedes albopictus (Diptera: Culicidae). 4th International Conference on Life Sciences and Biotechnology (ICOLIB 2021), Atlantis Press. 234-248 (2022). https://doi.org/10.2991/978-94-6463-062-6_23 [Google Scholar]
- W. Jablonka, I.-H. Kim, P.-H. Alvarenga, J.-G. Valenzuela, J.-C. Ribeiro, J.-F. Andersen, Functional and structural similarities of D7 proteins in the independently- evolved salivary secretions of sand flies and mosquitoes. Sci Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-019-41848-0 [Google Scholar]
- P.-H. Alvarenga, J.-F. Andersen, An Overview of D7 Protein Structure and Physiological Roles in Blood-Feeding Nematocera. Biology 12, 1. (2023). https://doi.org/10.3390/biology12010039 [Google Scholar]
- M. Szczuko, I. Kozioł, D. Kotlęga, J. Brodowski, A. Drozd, The Role of Thromboxane in the Course and Treatment of Ischemic Stroke: Review. Int J Mol Sci. 22, 21 (2021). https://doi.org/10.3390/ijms222111644 [CrossRef] [Google Scholar]
- Q. Xiang, X. Pang, Z. Liu, G. Yang, W. Tao, Q. Pei, Y. Cui, Progress in the development of antiplatelet agents: Focus on the targeted molecular pathway from bench to clinic. Pharmacol. Ther. 203, 107393 (2019). https://doi.org/10.1016/j.pharmthera.2019.107393 [CrossRef] [Google Scholar]
- I. Martin-Martin, O. Kern, S. Brooks, L.-B. Smith, P.-C. Valenzuela-Leon, B. Bonilla, H. Ackerman, E. Calvo, Biochemical characterization of AeD7L2 and its physiological relevance in blood feeding in the dengue mosquito vector, Aedes aegypti. The FEBS Journal. 288, 2014-2029, (2021). https://doi.org/10.1111/febs.15524 [CrossRef] [PubMed] [Google Scholar]
- A. Fontaine, I. Diouf, N. Bakkali, D. Missé, F. Pagès, T. Fusai, C. Rogier, L. Almeras, Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasites Vectors. 4, 187 (2011). https://doi.org/10.1186/1756-3305-4-187 [CrossRef] [Google Scholar]
- I. Martin-Martin, L.-B. Smith, A.-C. Chagas, A. Sá-Nunes, G. Shrivastava, P.-C. Valenzuela-Leon, E. Calvo, Aedes albopictus D7 Salivary Protein Prevents Host Hemostasis and Inflammation. Biomolecules. 10, 10 (2020). https://doi.org/10.3390/biom10101372 [CrossRef] [Google Scholar]
- V.-H. Ferreira-de-Lima, P.-S. Andrade, L. M. Thomazelli, M. T. Marrelli, P.-R. Urbinatti, R.-S. Almeida, T.-N. Lima-Camara, Silent circulation of dengue virus in Aedes albopictus (Diptera: Culicidae) resulting from natural vertical transmission. Sci Rep. 10, 3855 (2020). https://doi.org/10.1038/s41598-020-60870-1 [CrossRef] [Google Scholar]
- P.-M. Torres, A.-R. Sodero, P. Jofily, F.-P. Silva-Jr, Key Topics in Molecular Docking for Drug Design. Int. J. Mol. Sci. 20, 18 (2019). https://doi.org/10.3390/ijms20184574 [Google Scholar]
- S. Bienert, A. Waterhouse, T.-A. De Beer, G. Tauriello, G. Studer, L. Bordoli, T. Schwede, The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Res. 45, D313-D319 (2017). https://doi.org/10.1093/nar/gkw1132 [Google Scholar]
- Y. Wang, S.-H. Bryant, T. Cheng, J. Wang, A. Gindulyte, B.-A. Shoemaker, P.-A. Thiessen, S. He, J. Zhang, PubChem BioAssay: 2017 update. Nucleic Acids Res. 45, D955-D963 (2017). https://doi.org/10.1093/nar/gkw1118 [Google Scholar]
- W.-R. Huey, G.-M. Morris, S. Forli, Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial. (The Scripps Research Institute Molecular Graphics Laboratory, 2012). [Google Scholar]
- I.-W. Sari, J. Junaidin, D. Pratiwi, Studi Molecular Docking Senyawa Flavonoid Herba Kumis Kucing (Orthosiphon Stamineus B.) Pada Reseptor Α-Glukosidase Sebagai Antidiabetes Tipe 2. FARM. 7, 54 (2020). [Google Scholar]
- D. Ramírez J. Caballero, Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules. 23, 5 (2018). https://doi.org/10.3390/molecules23051038 [Google Scholar]
- N.-C. Endriyatno, M. Walid, Studi In Silico Kandungan Senyawa Daun Srikaya (Annona squamosa L.) terhadap Protein Dihydrofolate Reductase pada Mycobacterium tuberculosis. Pharmacon. 19, 1 (2022). https://doi.org/10.23917/pharmacon.v19i1.18044 [Google Scholar]
- D.-N. Minovski, Molecular Docking Calculations Utilizing Discovery Studio & Pipeline Pilot. Laboratory for Cheminformatics (National Institute of Chemistry, Ljubljana, Slovenia, 2021). [Google Scholar]
- A. Jo-Watanabe, T. Okuno, T. Yokomizo, The Role of Leukotrienes as Potential Therapeutic Targets in Allergic Disorders. Int. J. Mol. Sci. 20, 14 (2019). https://doi.org/10.3390/ijms20143580 [CrossRef] [Google Scholar]
- S.-A. Attique, M. Hassan, M. Usman, R.-M. Atif, S. Mahboob, K.-A. Al-Ghanim, M.-M.-Z. Bilal, Nawaz, A Molecular Docking Approach to Evaluate the Pharmacological Properties of Natural and Synthetic Treatment Candidates for Use against Hypertension. Int. J. Environ. Res. Public Health. 16, 6 (2019). https://doi.org/10.3390/ijerph16060923 [Google Scholar]
- N.-P. Susanti, N.-L. Laksmiani, N.-M. Noviyanti, K.-M. Arianti, I.-K. Duantara, Molecular Docking Terpinen-4-Ol Sebagai Antiinflamasi Pada Aterosklerosis Secara In Silico. JCHEM. 221 (2019). https://doi.org/10.24843/JCHEM.2019.v13.i02.p16 [CrossRef] [Google Scholar]
- L. Ferencz, D. L. Muntean, Identification of new superwarfarin-type rodenticides by structural similarity. The docking of ligands on the vitamin K epoxide reductase enzyme’s active site. Acta Univ. Sapientiae, Agric. Environ. 7, 108-122 (2015). [Google Scholar]
- G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman, Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 27, 221-234 (2013). https://doi.org/10.1007/s10822-013-9644-8 [CrossRef] [PubMed] [Google Scholar]
- G. Duan, C. Ji, and J.-H. Zhang, Developing an effective polarizable bond method for small molecules with application to optimized molecular docking. RSC Advances 10, 15530-15540 (2020). https://doi.org/10.1039/D0RA01483D [CrossRef] [PubMed] [Google Scholar]
- J. Kolina, S. Sumiwi, J. Levita, Mode Ikatan Metabolit Sekunder di Tanaman Akar Kuning (Arcangelisia Flava L.) dengan Nitrat Oksida Sintase. FITOFARMAKA 8, 4552 (2019). https://doi.org/10.33751/jf.v8i1.1171 [Google Scholar]
- M.-I. Alhazmi, Molecular docking of selected phytocompounds with H1N1 Proteins. Bioinformation, 11, 196-202 (2015). https://doi.org/10.6026/97320630011196 [CrossRef] [PubMed] [Google Scholar]
- D. Afriza, W.-H. Suriyah, S.-A. Ichwan, In silico analysis of molecular interactions between the anti-apoptotic protein survivin and dentatin, nordentatin, and quercetin. J. Phys.: Conf. Ser. 1073, 032001 (2018). https://doi.org/10.1088/1742-6596/1073/3/032001 [CrossRef] [Google Scholar]
- A. Fadlan, Y. R. Nusantoro, The Effect of Energy Minimization on The Molecular Docking of Acetone-Based Oxindole Derivatives. JKPK. 6, 1 (2021). https://doi.org/10.20961/jkpk.v6i1.45467 [Google Scholar]
- M.-A. Alsafi, D.-L. Hughes, M.-A. Said, First COVID-19 mol-ecular docking with a chalcone-based compound: synthesis, single-crystal structure and Hirshfeld surface analysis study. Acta Cryst C. 76, 1043-1050 (2020). https://doi.org/10.1107/S2053229620014217 [CrossRef] [Google Scholar]
- L. Martínez, Automatic Identification of Mobile and Rigid Substructures in Molecular Dynamics Simulations and Fractional Structural Fluctuation Analysis. PLoS One. 10, e0119264 (2015). https://doi.org/10.1371/journal.pone.0119264 [Google Scholar]
- M.-F. Pratama, Studi Docking Molekular Senyawa Turunan Kuinolin Terhadap Reseptor Estrogen-Α: Study of Molecular Docking of Quinoline Derivative Compounds against Estrogen-A Receptors. Jurnal Surya Medika (JSM). 2, 1 (2016). https://doi.org/10.33084/jsm.v2i1.215 [CrossRef] [Google Scholar]
- A. Arwansyah, L. Ambarsari, T. Sumaryada, Simulasi Docking Senyawa Kurkumin dan Analognya Sebagai Inhibitor Reseptor Androgen pada Kanker Prostat. Current Biochemistry. 1, 11-19 (2014). https://doi.org/10.29244/cb.1.1.11-19 [CrossRef] [Google Scholar]
- C. Wang, X. Cao, M. Dong, L. Zhang, J. Liu, X. Cao, X. Xue, Theoretical Calculation of Self-Propagating High-Temperature Synthesis (SHS) Preparation of AlB12. ChemRxiv. (2021). https://doi.org/10.26434/chemrxiv.13591427.v1 [Google Scholar]
- M. Umamaheswari, A. Madeswaran, K. Asokkumar, Virtual Screening Analysis and In- vitro Xanthine Oxidase Inhibitory Activity of Some Commercially Available Flavonoids. Iran J Pharm Res. 12, 317-323 (2013). [Google Scholar]
- N. Forouzesh, N. Mishra, An Effective MM/GBSA Protocol for Absolute Binding Free Energy Calculations: A Case Study on SARS-CoV-2 Spike Protein and the Human ACE2 Receptor. Molecules. 26, 8 (2021). https://doi.org/10.3390/molecules26082383 [CrossRef] [Google Scholar]
- K. Furmanová, B. Kozlíková, V. Vonásek, J. Byška, DockVis: Visual Analysis of Molecular Docking Data. Eurographics Workshop on Visual Computing for Biology and Medicine. 10 (2019). https://doi.org/10.2312/VCBM.20191238 [Google Scholar]
- D. Kumar, R. Kumar, R. Ramajayam, K.-W. Lee, D.-S. Shin, Synthesis, Antioxidant and Molecular Docking Studies of (-)-Catechin Derivatives. J. Korean Chem. Soc. 65, 106112 (2021). https://doi.org/10.5012/jkcs.2021.65.2.106 [Google Scholar]
- R. Kataria, A. Khatkar, In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of Chlorogenic acid against Urease protein and H. Pylori bacterium. BMC Chem. 13, 41 (2019). https://doi.org/10.1186/s13065-019-0556-0 [CrossRef] [Google Scholar]
- E. D. Głowacki, M. Irimia-Vladu, S. Bauer, N.-S. Sariciftci, Hydrogen-bonds in molecular solids - from biological systems to organic electronics. J. Mater. Chem. B. 1, 3742-3753 (2013). https://doi.org/10.1039/C3TB20193G [CrossRef] [PubMed] [Google Scholar]
- K.-K. Mishra, K. Borish, G. Singh, P. Panwaria, S. Metya, M.-S. Madhusudhan, A. Das, Observation of an Unusually Large IR Red-Shift in an Unconventional S-H Hydrogen-Bond. J. Phys. Chem. Lett. 12, 1228-1235 (2021). [CrossRef] [Google Scholar]
- T.-M. Dhorajiwala, S.-T. Halder, L. Samant, Comparative In Silico Molecular Docking Analysis of L-Threonine-3-Dehydrogenase, a Protein Target Against African Trypanosomiasis Using Selected Phytochemicals. JABR. 6, 101-108 (2019). https://doi.org/10.29252/JABR.06.03.04 [CrossRef] [Google Scholar]
- A.-P. Asmara, Kajian Integrasi Nilai -Nilai Karakter Islami Dengan Kimia Dalam Materi Kimia Karbon. JPS Unimus 4, 2 (2016). [Google Scholar]
- J.-S. Gómez-Jeria, A. Robles-Navarro, G. Kpotin, N. Garrido-Sáez, G.-D. Nelson, Some remarks about the relationships between the common skeleton concept within the Klopman-Peradejordi-Gómez QSAR method and the weak molecule-site interactions. J. Chem. Res. 5, 32-52 (2020). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.