Open Access
Issue
BIO Web Conf.
Volume 117, 2024
International Conference on Life Sciences and Technology (ICoLiST 2023)
Article Number 01017
Number of page(s) 12
DOI https://doi.org/10.1051/bioconf/202411701017
Published online 05 July 2024
  • Kementerian Kesehatan Republik Indonesia, Profil Kesehatan Indonesia 2016 (2016). [Google Scholar]
  • KEMENKES RI, Profil Kesehatan Indonesia 2020 (2021). [Google Scholar]
  • M. Widawati & N. H. Kusumastuti, Insektisida rumah tangga dan keberadaan larva Aedes aegypti di Jakarta Selatan. ASPIRATOR-Journal of Vector-borne Disease Studies, 9 (2017). https://doi.org/10.22435/aspirator.v9i1.5562.35-42 [Google Scholar]
  • R. Yudhastuti & M. F. D. Lusno, Gambaran kasus Demam Berdarah Dengue (DBD) di Pulau Bali Tahun 2012-2017.Jurnal Kesehatan Lingkungan Indonesia, 19 (2020) 27. https://doi.org/10.14710/jkli.19.1.27-34 [CrossRef] [Google Scholar]
  • L. P. Ambarita, H. Sitorus, & R. H. Komaria, Habitat Aedes pradewasa dan indeks entomologi di 11 kabupaten/kota Provinsi Sumatera Selatan. Balaba: Jurnal Litbang Pengendalian Penyakit Bersumber Binatang Banjarnegara, 12 (2016) 111-120. https://doi.org/10.22435/blb.v12i2.5002.111-120 [CrossRef] [Google Scholar]
  • E. Atikasari & L. Sulistyorini, Pengendalian vektor nyamuk Aedes aegypti di rumah sakit Kota Surabaya.The Indonesian Journal of Public Health, 13 (2019) 73. https://doi.org/10.20473/ijph.v13i1.2018.73-84 [CrossRef] [Google Scholar]
  • S. L. Nasifah & D. M. Sukendra, Kondisi lingkungan dan perilaku dengan kejadian DBD di wilayah kerja Puskesmas Kedungmundu. Indonesian Journal of Public Health and Nutrition, 1 (2021) 62-72. [Google Scholar]
  • S. Zen, Kemelimpahan dan aktivitas menggigit nyamuk Aedes sp pada daerah endemis demam berdarah dengue di Kota Metro, Lampung. BIOEDUKASI (Jurnal Pendidikan Biologi), 5 (2017) 151. https://doi.org/10.24127/bioedukasi.v5i2.794 [CrossRef] [Google Scholar]
  • C. Montolalu & C. Mongi, Analisis bifurkasi hopf dan kestabilan model dinamik transmisi virus dengue dengan waktu tunda dalam pengaruhnya terhadap kemunculan penyakit Demam Berdarah Dengue. d’CARTESIAN, 6 (2017) 86. https://doi.org/10.35799/dc.6.2.2017.17970 [Google Scholar]
  • M. R. Ridha, A. Fadilly, & N. A. Rosvita, Aktivitas nokturnal Aedes aegypti dan Ae. albopictus (Diptera : Culicidae) di berbagai daerah di Kalimantan. Journal of Health Epidemiology and Communicable Diseases (JHECDs), 3 (2017) 50-55. [Google Scholar]
  • N. W. Widhidewi, Epidemiologi dan pencegahan transmisi virus dengue. WICAKSANA: Jurnal Lingkungan dan Pembangunan, 3 (2019) 2-7. [Google Scholar]
  • H. S. Parulian Manalu & A. Munif, Pengetahuan dan perilaku masyarakat dalam pencegahan Demam Berdarah Dengue di Provinsi Jawa Barat dan Kalimantan Barat. ASPIRATOR-Journal of Vector-borne Disease Studies, 8 (2016) 69-76. https://doi.org/10.22435/aspirator.v8i2.4159.69-76 [Google Scholar]
  • E. Lesar, W. B. S. Joseph, & O. R. Pinontoan, Gambaran pengetahuan dan tindakan masyarakat tentang pengendalian vektor demam berdarah dengue di Desa Touure Kabupaten Minahasa Tahun 2020. Fakultas Kesehatan Masyarakat Universitas Sam Ratulagi Manado, 9 (2020) 168-175. [Google Scholar]
  • F. Priesley, M. Reza, & S. R. Rusdji, Hubungan perilaku Pemberantasan Sarang Nyamuk dengan Menutup, Menguras dan Mendaur Ulang Plus (PSN M Plus) terhadap kejadian Demam Berdarah Dengue (DBD) di Kelurahan Andalas. Jurnal Kesehatan Andalas, 7 (2018) 124. https://doi.org/10.25077/jka.v7.i1.p124-130.2018 [CrossRef] [Google Scholar]
  • E. S. Majawati, Kerentanan vektor Demam Berdarah Dengue terhadap insektisida golongan organofosfat. Jurnal Kedokteran Mediktek, 21 (2015) 1-4. [Google Scholar]
  • M. Widawati & N. H. Kusumastuti, Insektisida rumah tangga dan keberadaan larva Aedes aegypti di Jakarta Selatan. ASPIRATOR-Journal of Vector-borne Disease Studies, 9 (2017). https://doi.org/10.22435/aspirator.v9i1.5562.35-42 [Google Scholar]
  • A. A. Almadiy, Chemical composition, insecticidal and biochemical effects of two plant oils and their major fractions against Aedes aegypti, the common vector of dengue fever. Heliyon, 6 (2020) e04915. https://doi.org/10.1016/j.heliyon.2020.e04915 [CrossRef] [PubMed] [Google Scholar]
  • A. Y. Syani & S. Sutarto, Insecticide resistance in Aedes aegypti. J Agromedicine, 5 (2018) 582-586. [Google Scholar]
  • R. Martianasari & P. H. Hamid, Larvicidal, adulticidal, and oviposition-deterrent activity of Piper betle L. essential oil to Aedes aegypti. Veterinary World, 12 (2019) 367-371. https://doi.org/10.14202/vetworld.2019.367-371 [CrossRef] [PubMed] [Google Scholar]
  • N. Faris, Muhammad., Lusiyana, Efek adulticida minyak atsiri bunga cengkeh (Ayzygium aromaticum) sebagai bahan anti nyamuk elektrik terhadap nyamuk Aedes aegypti. JIMK, 8 (2021) 68-76. [Google Scholar]
  • E. E. Ajaegbu, S. P. Y. Danga, I. U. Chijoke, & F. B. C. Okoye, Mosquito adulticidal activity of the leaf extracts of Spondias mombin L. against Aedes aegypti L. and isolation of active principles. Journal of Vector Borne Diseases, 53 (2016) 17-22. [CrossRef] [PubMed] [Google Scholar]
  • M. Diana, C. Sales, H. B. Costa, & D. D. Meira, Adulticidal, larvicidal, pupicidal and oviposition deterrent activities of essential oil from Zanthoxylum limonella Alston (Rutaceae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Asian Paci fi c Journal of Tropical Biomedicine pineapple, 6 (2016) 26-31. [CrossRef] [Google Scholar]
  • A. A. Bakar, H. Ahmad, S. Sulaiman, B. Omar, & R. M. Ali, Evaluation of in vitro Bioactivity of Melaleuca cajuputi Powell Essential Oil against Aedes aegypti (L.) and Aedes albopictus (Skuse). Sains Malaysiana, 48 (2019) 1919-1926. https://doi.org/10.17576/jsm-2019-4809-13 [CrossRef] [Google Scholar]
  • K. Wulandari & M. Ahyanti, Efektivitas ekstrak biji Bintaro (Cerbera manghas) sebagai larvasida hayati pada larva Aedes aegypti instar III.Jurnal Kesehatan, 9 (2018) 218. https://doi.org/10.26630/jk.v9i2.889 [CrossRef] [Google Scholar]
  • M. Saleh, A. Susilawaty, S. Syarfaini, & M. Musdalifah, Uji efektivitas ekstrak kulit buah jeruk nipis (Citrus aurantifolia) sebagai insektisida hayati terhadap nyamuk Aedes aegypti. Jurnal Kesehatan Lingkungan, 3 (2017) 30-36. [Google Scholar]
  • M. Widawati & H. Prasetyowati, Efektivitas ekstrak buah Beta vulgaris L . (buah bit) dengan berbagai fraksi pelarut terhadap mortalitas larva Aedes aegypti. Aspirator, 5 (2013) 23-29. [Google Scholar]
  • Z. Al Amin, T. Wardhani, & S. Pratamaningtyas, Pengaruh metode maserasi jazzar dan balafif dalam memperoleh ekstrak air daun mindi (Melia azedarach L.) sebagai insektisida botani pada ulat grayak (Spodoptera litura F.). AGRIKA: Jurnal Ilmi-Ilmu Pertanian, 10 (2016) 110-121. https://doi.org/10.31328/ja.v10i2.458 [Google Scholar]
  • D. Wahyuni & I. Loren, Perbedaan toksisitas ekstrak daun sirih (Piper betle L.) dengan ekstrak biji srikaya (Annona squamosa L.) terhadap larva nyamuk Aedes aegypti L. Saintifika, 17 (2015) 38-48. [Google Scholar]
  • Muharram, I. Dini, adnan, & A. Fudhail, Senyawa metabolit sekunder dan bioaktivitas dari ekstrak tumbuhan Hutan Tropis Sulawesi Selatan. (2017) 8. [Google Scholar]
  • M. Saleh, A. Susilawaty, S. Syarfaini, & M. Musdalifah, Uji efektivitas ekstrak kulit buah jeruk nipis (Citrus aurantifolia) sebagai insektisida hayati terhadap nyamuk Aedes aegypti. Jurnal Kesehatan Lingkungan, 3 (2017) 30-36. [Google Scholar]
  • K. Wulandari & M. Ahyanti, Efektivitas ekstrak biji Bintaro (Cerbera manghas) sebagai larvasida hayati pada larva Aedes aegypti instar III.Jurnal Kesehatan, 9 (2018) 218. https://doi.org/10.26630/jk.v9i2.889 [CrossRef] [Google Scholar]
  • M. R. A. Putri, E. Wydiamala, & L. Hayatie, Efektivitas ekstrak etanol daun sirih merah (Piper crocatum Ruiz dan Pav.) sebagai repelen terhadap nyamuk Aedes aegypti. Jurnal Kesehatan Maharatu, 5 (2022) 623-631. https://doi.org/10.20527/ht.v5i3.7736 [Google Scholar]
  • P. K. Maharana, Ethnobotanical, phytochemical, and pharmacological properties of Cerbera manghas L. Journal of Biosciences, 46 (2021) 1-8. https://doi.org/10.1007/S12038-021-00146-6 [CrossRef] [PubMed] [Google Scholar]
  • L. Ling, Z. Jiyong, Y. Shengyong, H. Cui, C. Kaihong, & D. Chaoyang, Aromatic cyclopentenopyridine as well as synthesis method and application thereof. (2019). [Google Scholar]
  • P. Iawsipo, W. Choksawangkarn, C. Promdan, & P. Nilkasam, Antibacterial and antioxidant activities of Cerbera manghas and C. odollam leaf extracts. 22 (2017) 129-140. [Google Scholar]
  • M. Basyuni, A. N. Prabuanisa, R. Wati, I. K. T. W. Kusuma, Hamiudin, Guntur, & H. Oku, Distribution of polyisoprenoids in various tissues of Bintaro (Cerbera manghas). 2021 (2018) 30008. https://doi.org/10.1063/1.5062732 [Google Scholar]
  • M. Saxena, E. B. Jadhav, M. S. Sankhla, M. Singhal, K. Parihar, K. K. Awasthi, & G. Awasthi, Bintaro (Cerbera odollam and Cerbera manghas): an overview of its ecofriendly use, pharmacology, and toxicology. Environmental Science and Pollution Research, 30 (2022) 71970-71983. https://doi.org/10.1007/s11356-022-22585-w [CrossRef] [Google Scholar]
  • M. Y. Musdja, Chadidjah, & I. Djajanegara, Antibacterial activity of dichloromethane and ethyl acetate extracts of bintaro leaf (cerbera manghas, linn) against staphylococcus aureus and escherichia coli. (2019). [Google Scholar]
  • Y. Deng, Y. Liao, J.-J. Li, L. Yang, H. Zhong, Q. Zhou, & Z. Qing, Acaricidal activity against Panonychus citri and active ingredient of the mangrove plant Cerbera manghas.Natural Product Communications, 9 (2014) 1265. https://doi.org/10.1177/1934578X1400900911 [PubMed] [Google Scholar]
  • S. S. Prasanth & R. Aiyalu, Quantitative determination of cerberin in seed extract of cerbera odollam and rat serum by high performance thin layer chromatography. journal of applied pharmaceutical science, 5 (2015) 61-69. [CrossRef] [Google Scholar]
  • B. Singh & A. Kaur, Control of insect pests in crop plants and stored food grains using plant saponins: A review. Lwt-Food Science and Technology, 87 (2018) 93-101. https://doi.org/10.1016/J.LWT.2017.08.077 [CrossRef] [Google Scholar]
  • E. De Geyter, D. Geelen, & G. Smagghe, First results on the insecticidal action of saponins. Communications in agricultural and applied biological sciences, 72 (2007) 645-648. [PubMed] [Google Scholar]
  • S. K. Dolma, E. Sharma, A. Gulati, & S. G. E. Reddy, Insecticidal activities of tea saponin against diamondback moth, Plutella xylostella and aphid, Aphis craccivora. Toxin Reviews, 37 (2018) 52-55. https://doi.org/10.1080/15569543.2017.1318405 [Google Scholar]
  • I. Iovinella, F. Barbieri, E. Biazzi, C. Sciandra, A. Tava, G. Mazza, L. Marianelli, A. Cini, P. F. Roversi, & G. Torrini, Antifeedant and insecticidal effects of alfalfa saponins in the management of the Japanese beetle Popillia japonica. Journal of Applied Entomology, (2023). https://doi.org/10.1111/jen.13153 [Google Scholar]
  • N.E.-H. Djeghader, L. Aïssaoui, K. Amira, & H. Boudjelida, Toxicity evaluation and effects on the development of a plant extract, the Saponin, on the domestic mosquito, Culex pipiens. International Journal of Mosquito Research, 5 (2018) 1-5. [Google Scholar]
  • E. De Geyter, Toxicity and mode of action of steroid and terpenoid secondary plant metabolites against economically important pest insects in agriculture, 2012. [Google Scholar]
  • M. Fazolin, H. R. Bizzo, & A. F. M. Monteiro, Potential use of terpenoids for control of insect pests. Terpenoids: Recent Advances in Extraction, Biochemistry and Biotechnology (2022), pp. 246-278. https://doi.org/10.2174/9781681089645122010013 [CrossRef] [Google Scholar]
  • O. S. Baker, E. J. Norris, & E. R. Burgess, Insecticidal and synergistic potential of htree monoterpenoids against the Yellow Fever Mosquito, Aedes aegypti (Diptera: Culicidae), and the House Fly, Musca domestica (Diptera: Muscidae). Molecules, 28 (2023) 3250. https://doi.org/10.3390/molecules28073250 [CrossRef] [PubMed] [Google Scholar]
  • Z. Liu, Q. Li, & B. Song, Pesticidal activity and mode of action of monoterpenes. Journal of Agricultural and Food Chemistry, 70 (2022) 4556-4571. https://doi.org/10.1021/acs.jafc.2c00635 [CrossRef] [PubMed] [Google Scholar]
  • C. Balachandran, S. Anbalagan, C. Kandeepan, N. A. Nagendran, M. Jayakumar, E. F. Abd Allah, A.A. Alqarawi, A. Hashem, & K. Baskar, Molecular docking studies of natural alkaloids as acetylcholinesterase (AChE1) inhibitors in Aedes aegypti. Journal of Asia-pacific Entomology, 24 (2021) 645-652. https://doi.org/10.1016/J.ASPEN.2021.05.011 [CrossRef] [Google Scholar]
  • M. Masi, A. Cala, N. Tabanca, A. Cimmino, I. R. Green, J. R. Bloomquist, W. A. L. Van Otterlo, F. A. Macías, & A. Evidente, Alkaloids with Activity against the Zika Virus Vector Aedes aegypti (L.)-Crinsarnine and Sarniensinol, Two New Crinine and Mesembrine Type Alkaloids Isolated from the South African Plant Nerine sarniensis. Molecules, 21 (2016) 1432. https://doi.org/10.3390/MOLECULES21111432 [CrossRef] [PubMed] [Google Scholar]
  • K. Inaba, K. Ebihara, M. Senda, R. Yoshino, C. Sakuma, K. Koiwai, D. Takaya, C. Watanabe, A. Watanabe, Y. Kawashima, K. Fukuzawa, R. Imamura, H. Kojima, T. Okabe, N. Uemura, S. Kasai, H. Kanuka, T. Nishimura, K. Watanabe, H. Inoue, Y. Fujikawa, T. Honma, T. Hirokawa, T. Senda, & R. Niwa, Molecular action of larvicidal flavonoids on ecdysteroidogenic glutathione S-transferase Noppera-bo in Aedes aegypti. BMC Biology, 20 (2022). https://doi.org/10.1186/s12915-022-01233-2 [CrossRef] [Google Scholar]
  • H. Perumalsamy, M. J. Jang, J.-R. Kim, M. Kadarkarai, & Y.-J. Ahn, Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species.Parasites & Vectors, 8 (2015) 237. https://doi.org/10.1186/S13071-015-0848-8 [CrossRef] [PubMed] [Google Scholar]
  • A. Saxena, G. Saxena, R. Arnold, P. Anand, & S. Tiwari, Evaluation of larvicidal potential of flavonoid extracted from Sphaeranthus indicus Linn (Asteraceae) for controlling mosquito Culex quinquefaciatus (Culicidae) Diptera (2013). [Google Scholar]
  • I. Guswenrivo, D. Tarmadi, & S. Yusuf, Insecticide activity of Cerbera manghas fruit exstract to Sitophilus oryzae (Coleoptera: Curculionidae). 11 (2013) 82-89. https://doi.org/10.51850/JITKT.V11I1.107 [Google Scholar]
  • P. Ss & A. Rajasekaran, Derivative ultra-violet spectroscopic method for the estimation of cerberin in rat plasma. International journal of pharma and bio sciences, 6 (2015) 749-758. [Google Scholar]
  • R. S. El-Mallakh, K. Brar, & R.R. Yeruva, Cardiac glycosides in human physiology and disease: Update for entomologists. Insects, 10 (2019) 102. https://doi.org/10.3390/INSECTS10040102 [CrossRef] [PubMed] [Google Scholar]
  • D. A. S. Smith, Cardiac glycosides in Danaus chrysippus (L.) provide some protection against an insect parasitoid. Cellular and Molecular Life Sciences, 34 (1978) 844-845. https://doi.org/10.1007/BF01939655 [CrossRef] [Google Scholar]
  • B. Li-Ping, Z. Zheng, Z. Xiaobo, G.-Y. Zhu, & J. Zhi-Hong, Cardiac glycoside compound, synthesis method and application thereof. (2021). [Google Scholar]
  • L. Hui, M. Fucheng, F. Danqing, Y. Qiu, Y.-K. Qiu, K. Caihuan, & P. Su, Application of cardiac glycoside compound in marine biofouling prevention, 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.