Open Access
Issue
BIO Web Conf.
Volume 127, 2024
The International Conference and Workshop on Biotechnology (ICW Biotech 2024)
Article Number 01006
Number of page(s) 11
Section Agricultural Biotechnology for Food Improvement and Production
DOI https://doi.org/10.1051/bioconf/202412701006
Published online 13 September 2024
  • T. T. Nkukwana. Global poultry production: Current impact and future outlook on the South African poultry industry. S. Afr. J. Anim. Sci. 48, 869 (2019). [CrossRef] [Google Scholar]
  • E. Chuka. Comparative Study of the Effects of Probiotic and Commercial Enzyme on Growth Rate, Haematology and Serum Biochemistry of Broiler Chicken. J. Food Process. Technol. 05, (2014). [CrossRef] [Google Scholar]
  • M. A. Tavárez & F. S. de los Santos. Impact of genetics and breeding on broiler production performance: A look into the past, present, and future of the industry. Anim. Front. 6, 37–41 (2016). [Google Scholar]
  • Syed Fazal ur Rahim & Muhammad Abdullah Bin Masood. Global view of animal feed in halal perspective. GSC Adv. Res. Rev. 11, 037–069 (2022). [CrossRef] [Google Scholar]
  • A. Sahu, R. Verma, U. Gupta, S. Kashyap & I. Sanyal. An Overview of Targeted Genome Editing Strategies for Reducing the Biosynthesis of Phytic Acid: an Anti-nutrient in Crop Plants. Mol. Biotechnol. 66, 11–25 (2024). [CrossRef] [PubMed] [Google Scholar]
  • S. L. Lovelock. et al. The road to fully programmable protein catalysis. Nature 606, 49–58 (2022). [CrossRef] [PubMed] [Google Scholar]
  • M. R. Khan. Immobilized enzymes: a comprehensive review. Bull. Natl. Res. Cent. 45, (2021). [Google Scholar]
  • M. Alagawany et al. Evaluation of dried tomato pomace as a non-conventional feed: Its effect on growth, nutrients digestibility, digestive enzyme, blood chemistry and intestinal microbiota of growing quails. Food Energy Secur. 11, 1–15 (2022). [CrossRef] [Google Scholar]
  • C. Grassin & Y. Coutel. Enzymes in Fruit and Vegetable Processing and Juice Extraction. Enzymes in Food Technology: Second Edition (2009). doi:10.1002/9781444309935.ch11. [Google Scholar]
  • E. T. Hwang & S. Lee. Multienzymatic Cascade Reactions via Enzyme Complex by Immobilization. ACS Catal. 9, 4402–4425 (2019). [CrossRef] [Google Scholar]
  • G. A. Ellis et al. Artificial Multienzyme Scaffolds: Pursuing in Vitro Substrate Channeling with an Overview of Current Progress. ACS Catal. 9, 10812–10869 (2019). [CrossRef] [Google Scholar]
  • N. C. Dubey & B. P. Tripathi. Nature Inspired Multienzyme Immobilization: Strategies and Concepts. ACS Appl. Bio Mater. 4, 1077–1114 (2021). [CrossRef] [Google Scholar]
  • A. A. Mohammed & A. Budihargo. Effects of Phyprozyme HP Supplementation in Diets on Body Weight Composition in Nile Tilapia (Oreochromis niloticus). VII, 215–219 (2020). [Google Scholar]
  • M. Juárez et al. Beef Texture and Juiciness*. Handb. Meat Meat Process. Second Ed. 177–206 (2012) doi:10.1201/b11479-13. [Google Scholar]
  • B. M. Naveena, M. Kiran, & S. K. Mendiratta. Post harvest technologies to deal with poultry meat toughness, with reference to spent birds. Worlds. Poult. Sci. J. 69, 553–568 (2013). [Google Scholar]
  • M. G. Guevara & G. R. Daleo. Biotechnological Applications of Plant Proteolytic Enzymes. Biotechnological Applications of Plant Proteolytic Enzymes (2018). doi:10.1007/978-3-319-97132-2. [Google Scholar]
  • A. Humayan Kabir, et al. Aquatic & Marine Biology, Fisheries, Zoology, Poultry, Agricultural science etc. by 12 (issues) publication frequency in a year. Aquat. Biol. Agric. Sci. Editor. Board Copy Right Authors Instr. A Sample Pap. Bangla J. Bangla J. 66, 102–112 (2021). [Google Scholar]
  • M. Chandrasekaran. Enzymes in Food and Beverage Processing. Enzymes in Food and Beverage Processing (2015). doi:10.1201/b19408. [CrossRef] [Google Scholar]
  • M. Achilonu, K. Shale, G. Arthur, K. Naidoo, & M. Mbatha. Phytochemical Benefits of Agroresidues as Alternative Nutritive Dietary Resource for Pig and Poultry Farming. J. Chem. 2018, (2018). [CrossRef] [Google Scholar]
  • D. A. A. W. Hasoon, K. A. Kadhim, & A. M. Rahmah. Effect of bromelain in obese diabetic patients in Iraq. Rev. Latinoam. Hipertens. 17, 376–382 (2022). [Google Scholar]
  • F. G. Cândido et al. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. Int. J. Food Sci. Nutr. 69, 125–143 (2018). [CrossRef] [PubMed] [Google Scholar]
  • G. Jamar, D. A. Ribeiro & L. P. Pisani. High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Crit. Rev. Food Sci. Nutr. 61, 836–854 (2021). [Google Scholar]
  • S. N. Qaisrani, M. M. Van Krimpen, R. P. Kwakkel, M. W. A. Verstegen, & W. H. Hendriks. Dietary factors affecting hindgut protein fermentation in broilers: A review. Worlds. Poult. Sci. J. 71, 139–160 (2015). [CrossRef] [Google Scholar]
  • S. P. H. Shekarabi, M. Ghodrati, M. A. O. Dawood, A. S. Masouleh, & A. Roudbaraki. The multi-enzymes and probiotics mixture improves the growth performance, digestibility, intestinal health, and immune response of Siberian sturgeon (Acipenser baerii). Ann. Anim. Sci. 22, 1063–1072 (2022). [CrossRef] [Google Scholar]
  • H. Lu. et al. Effects of dietary supplementation of exogenous multi-enzyme mixture containing carbohydrases and phytase on growth performance, energy and nutrient digestibility, and selected mucosal gene expression in the small intestine of weanling pigs fed nutrient d. Can. J. Anim. Sci. 96, 243–251 (2016). [Google Scholar]
  • K.A. Attia, S. Y. Saleh, S. A. El-hamidSafaa, A. ZakiAmal & A. E.-S. Mohamed. Effects of Exogenous Multi-enzyme Feed Additive (Kemzyme) on the Activities of Certain Digestive Enzymes and Intestinal Morphology in Growing Rabbits. J. Agric. Sci. 4, 35–44 (2011). [Google Scholar]
  • A. Raza, S. Bashir, & R. Tabassum. An update on carbohydrases: growth performance and intestinal health of poultry. Heliyon 5, e01437 (2019). [CrossRef] [PubMed] [Google Scholar]
  • M. Alagawany, S. S. Elnesr & M. R. Farag. The role of exogenous enzymes in promoting growth and improving nutrient digestibility in poultry. Iran. J. Vet. Res. 19, 157–164 (2018). [Google Scholar]
  • N. Morgan, M. M. Bhuiyan, A. Wallace & R. Hopcroft. Comparing a single dose of xylanase to a double dose or cocktail of non-starch polysaccharide-degrading enzymes in broiler chicken diets. J. Appl. Anim. Nutr. 10, 91–102 (2022). [CrossRef] [Google Scholar]
  • U. Aftab, M. R. Bedford. The use of NSP enzymes in poultry nutrition: Myths and realities. Worlds. Poult. Sci. J. 74, 277–286 (2018). [CrossRef] [Google Scholar]
  • H. T. Nguyen, M. R. Bedford & N. K. Morgan. Importance of considering non-starch polysaccharide content of poultry diets. Worlds. Poult. Sci. J. 77, 619–637 (2021). [CrossRef] [Google Scholar]
  • S. Musigwa, N. Morgan, R. Swick, P. Cozannet, & S. B. Wu Optimisation of dietary energy utilisation for poultry–a literature review. Worlds. Poult. Sci. J. 77, 5–27 (2021). [CrossRef] [Google Scholar]
  • M. R. Bedford. The evolution and application of enzymes in the animal feed industry: the role of data interpretation. Br. Poult. Sci. 59, 486–493 (2018). [CrossRef] [PubMed] [Google Scholar]
  • D. Arnone, D. et al. Sugars and Gastrointestinal Health. Clin. Gastroenterol. Hepatol. 20, 1912–1924.e7 (2022). [CrossRef] [Google Scholar]
  • M. Haskovic et al. Pathophysiology and targets for treatment in hereditary galactosemia: A systematic review of animal and cellular models. J. Inherit. Metab. Dis. 43, 392–408 (2020). [CrossRef] [PubMed] [Google Scholar]
  • A. D. E. Van Laar, C. Grootaert & J. Van Camp. Rare monoand disaccharides as healthy alternative for traditional sugars and sweeteners? Crit. Rev. Food Sci. Nutr. 61, 713–741 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Md Benzamin, et al. Diagnosis of Galactosemia by Simple Technique in a ResourceConstraint Country. J. Enam Med. Coll. 10, 43–48 (2020). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.